tan(2kπ+α)=tanα(k∈Z)?

 我来答
晴天便好0K

2022-07-13 · TA获得超过12万个赞
知道顶级答主
回答量:16.3万
采纳率:84%
帮助的人:6731万
展开全部
tan(2kπ+α)=tanα(k∈Z)

设α为任意角,终边相同的角的同一三角函数的值相等

sin(2kπ+α)=sinα(k∈Z)

cos(2kπ+α)=cosα(k∈Z)

tan(2kπ+α)=tanα(k∈Z)

cot(2kπ+α)=cotα(k∈Z)

补充

倍角公式

1、Sin2A=2SinA*CosA

2、Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1

3、tan2A=(2tanA)/(1-tanA^2)(注:SinA^2 是sinA的平方 sin2(A) )

降幂公式

1、sin^2(α)=(1-cos(2α))/2=versin(2α)/2

2、2cos^2(α)=(1+cos(2α))/2=covers(2α)/2

3、tan^2(α)=(1-cos(2α))/(1+cos(2α))

推导公式

1、1tanα+cotα=2/sin2α

2、tanα-cotα=-2cot2α

3、1+cos2α=2cos^2α

4、、4-cos2α=2sin^2α

5、1+sinα=(sinα/2+cosα/2)^2=2sina(1-sin2a)+(1-2sin2a)sina

两角和差

1、1cos(α+β)=cosα·cosβ-sinα·sinβ

2、cos(α-β)=cosα·cosβ+sinα·sinβ

3、sin(α±β)=sinα·cosβ±cosα·sinβ

4、4tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)

5、tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

和差化积

1、sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]

2、sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]

3、cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]

4、cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]

5、tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)

积化和差

1、sinαsinβ = [cos(α-β)-cos(α+β)] /2

2、sinαcosβ = [sin(α+β)+sin(α-β)]/2

3、cosαsinβ = [sin(α+β)-sin(α-β)]/2

诱导公式

1、(-α) = -sinα、cos(-α) = cosα

2、tan (—a)=-tanα、sin(π/2-α) = cosα、cos(π/2-α) = sinα、sin(π/2+α) = cosα

3、3cos(π/2+α) = -sinα

4、(π-α) = sinα、cos(π-α) = -cosα

5、5tanA= sinA/cosA、tan(π/2+α)=-cotα、tan(π/2-α)=cotα

6、tan(π-α)=-tanα、tan(π+α)=tanα

锐角三角函数公式

1、sin α=∠α的对边 / 斜边

2、α=∠α的邻边 / 斜边

3、tan α=∠α的对边 / ∠α的邻边

4、cot α=∠α的邻边 / ∠α的对边
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式