求极限lim(x-3)/(x^-9)(x→3)?
1个回答
展开全部
lim(x-3)/(x^-9)(x→3)
=lim(x-3)/[(x+3)(x-3)]
=lim1/(x+3)
=1/(3+3)
=1/6,6,lim(x-3)/(x^-9)(x→3)
=lim(x-3)/[(x+3)(x-3)]
=lim1/(x+3)
=1/(3+3)
=1/6,2,(x-3)/(x²-9)
=(x-3)/[(x-3)(x+3)]
=1/(x+3)
=1/6
省略求极限符号lim~~,1,x的几次方呀?,1,
=lim(x-3)/[(x+3)(x-3)]
=lim1/(x+3)
=1/(3+3)
=1/6,6,lim(x-3)/(x^-9)(x→3)
=lim(x-3)/[(x+3)(x-3)]
=lim1/(x+3)
=1/(3+3)
=1/6,2,(x-3)/(x²-9)
=(x-3)/[(x-3)(x+3)]
=1/(x+3)
=1/6
省略求极限符号lim~~,1,x的几次方呀?,1,
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询