数列问题,给我具体的解,谢谢~~~

已知数列{an}和{bn}满足:a1=λ,a(n+1)=(2/3)an+n-4,bn=[(-1)^n](an-3n+21),其中为λ为实数,n为正整数.⑴对任意实数λ,证... 已知数列{an}和{bn}满足:a1=λ,a(n+1)=(2/3)an+n-4,bn=[(-1)^n](an-3n+21),其中为λ为实数,n为正整数.
⑴对任意实数λ,证明数列{an}不是等比数列;
⑵试判断数列{bn}是否为等比数列,并证明你的结论.
展开
snyhs
2010-08-14 · TA获得超过9655个赞
知道大有可为答主
回答量:2150
采纳率:100%
帮助的人:996万
展开全部

a(n+1)=(2/3)an+n-4
an=(2/3)a(n-1)+n-5
两式相减:
a(n+1)-an=(2/3)[an-a(n-1)]+1
设bn=a(n+1)-an,
a2=(2/3)a1-3=(2/3)λ-3
b1=a2-a1=-(1/3)λ-3
b2=a3-a2=(2/3)a2-2-a2=-(1/3)a2-2=-(2/9)λ-1
bn=(2/3)b(n-1)+1
b(n-1)=(2/3)b(n-2)+1
两式相减:
bn-b(n-1)=(2/3)[b(n-1)-b(n-2)]
bn-b(n-1)=(2/3)^(n-2)*(b2-b1)
=(2/3)^(n-2)*[(1/9)λ+2]

bn-b(n-1)=(2/3)^(n-2)*[(1/9)λ+2]
b(n-1)-b(n-2)=(2/3)^(n-3)*[(1/9)λ+2]
……
b3-b2=(2/3)^1*[(1/9)λ+2]
b2-b1=(2/3)^0*[(1/9)λ+2]
叠加:
bn-b1=[(1/9)λ+2]*[(2/3)^(n-2)+(2/3)^(n-3)+……(2/3)^1+(2/3)^0]
=[(1/9)λ+2]*[1-(2/3)^(n-1)]/(1-2/3)
=[(1/3)λ+6]*[1-(2/3)^(n-1)]
bn=b1+[(1/3)λ+6]*[1-(2/3)^(n-1)]
=[(1/3)λ+6]*[1-(2/3)^(n-1)]-(1/3)λ-3
a(n+1)-an=bn=[(1/3)λ+6]*[1-(2/3)^(n-1)]-(1/3)λ-3
再用叠加法:
an-a(n-1)=[(1/3)λ+6]*[1-(2/3)^(n-2)]-(1/3)λ-3
an-a1=[(1/3)λ+6]*{(n-1)-[(2/3)^(n-2)+(2/3)^(n-3)+……+(2/3)^1+(2/3)^0]}-(n-1)(1/3)λ-3(n-1)
=[(1/3)λ+6]*{(n-1)-[1-(2/3)^(n-1)]/(1-2/3)}-(n-1)(1/3)λ-3(n-1)
=[(1/3)λ+6]*{(n-4)+3(2/3)^(n-1)]}-(n-1)(1/3)λ-3(n-1)
=(λ+18)(2/3)^(n-1)+3(n-7)-λ
an=(λ+18)(2/3)^(n-1)+3(n-7)
明显不是等比数列。

(2)
bn=[(-1)^n](an-3n+21)
=[(-1)^n][(λ+18)(2/3)^(n-1)+3(n-7)-3n+21]
=[(-1)^n][(λ+18)(2/3)^(n-1)]
=-(λ+18)(-2/3)^(n-1)
是首项为-(λ+18)公比为(-2/3)的等比数列。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式