高数问题,为什么是可去间断点不是跳跃间断点
3个回答
展开全部
可去间断点是左右极限存在且相等。
跳跃间断点是左右极限不相等。
在间断点处左右极限都存在的是第一类间断点,包括两种,左右极限相等是可去间断点,左右极限不等是跳跃间断点。而在间断点处至少有一个单侧极限不存在是第二类间断点,也包括两种,极限为无穷大的是无穷型间断点,极限不存在但也不是无穷大的是震荡型间断点。
设f(x)在Xo的某一邻域内有定义且Xo是函数f(x)的间断点,那么如果f(x-)与f(x+)都存在,则称Xo为f(x)的第一类间断点。又如果f(x-)=f(x+)且不等于f(Xo)(或f(Xo)无定义),则称Xo为f(x)的可去间断点(Removable Discontinuity )。
可去间断点可以用重新定义Xo处的函数值使新函数成为连续函数
可去间断点是左极限和右极限存在但是该点没有定义又称为可补间断点
可去间断点就是左极限=右极限,但是不=该点的函数值,或者在该点没有定义。
因此,可去间断点是不连续的。
跳跃间断点是左右极限不相等。
在间断点处左右极限都存在的是第一类间断点,包括两种,左右极限相等是可去间断点,左右极限不等是跳跃间断点。而在间断点处至少有一个单侧极限不存在是第二类间断点,也包括两种,极限为无穷大的是无穷型间断点,极限不存在但也不是无穷大的是震荡型间断点。
设f(x)在Xo的某一邻域内有定义且Xo是函数f(x)的间断点,那么如果f(x-)与f(x+)都存在,则称Xo为f(x)的第一类间断点。又如果f(x-)=f(x+)且不等于f(Xo)(或f(Xo)无定义),则称Xo为f(x)的可去间断点(Removable Discontinuity )。
可去间断点可以用重新定义Xo处的函数值使新函数成为连续函数
可去间断点是左极限和右极限存在但是该点没有定义又称为可补间断点
可去间断点就是左极限=右极限,但是不=该点的函数值,或者在该点没有定义。
因此,可去间断点是不连续的。
展开全部
我觉得是跳跃间断点,因为1处的右极限是0
追问
我也觉得是跳跃,可是答案是可去间断点
追答
其实我感觉题目有点问题,总觉得分母不应该是sinx,它应该是要考察变上限积分的求导,还有洛必达法则或者等价无穷小
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
因为左右极限相等所以是可去间断点
更多追问追答
追答
极限是存在的
追问
右极限怎么求的
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询