超难初中几何题(高人来)
已知:在三角形ABC中,AB=AC,CD是角平分线,过三角形ABC的外心作CD的垂线交AC于E,过E作CD的平行线交AB于F。求证:AE=FD感谢三位的帮助,又掉罄和fy...
已知:在三角形ABC中,AB=AC,CD是角平分线,过三角形ABC的外心作CD的垂线交AC于E,过E作CD的平行线交AB于F。
求证:AE=FD
感谢三位的帮助,又掉罄 和 fysx730821 的回答我都看懂了,只是又掉罄的方法比较烦,又写得很挤,看起来很头大。
哈萨诺奇的提示 和 fysx730821的方法似乎相同,等哈萨诺奇在线的时候,我去问问他,所以可能采纳要拖几天,敬请谅解。
刚才和哈萨诺奇聊了一下,发现他的方法和 fysx730821基本相同。
答得多的方法也不错,没办法,进入投票吧。 展开
求证:AE=FD
感谢三位的帮助,又掉罄 和 fysx730821 的回答我都看懂了,只是又掉罄的方法比较烦,又写得很挤,看起来很头大。
哈萨诺奇的提示 和 fysx730821的方法似乎相同,等哈萨诺奇在线的时候,我去问问他,所以可能采纳要拖几天,敬请谅解。
刚才和哈萨诺奇聊了一下,发现他的方法和 fysx730821基本相同。
答得多的方法也不错,没办法,进入投票吧。 展开
4个回答
展开全部
提示一下:
过D作EF的垂线交EF于H,你可以得到:
GDHE为矩形,然后利用CD为∠ACB的角平分线,和GE垂直EF,你可以转化角的关系,找出角和边的关系,然后利用三角形全等,就可以得出结论!
因为没办法画图,所以也没办法详细描述,请自己按照提示做一下。
过D作EF的垂线交EF于H,你可以得到:
GDHE为矩形,然后利用CD为∠ACB的角平分线,和GE垂直EF,你可以转化角的关系,找出角和边的关系,然后利用三角形全等,就可以得出结论!
因为没办法画图,所以也没办法详细描述,请自己按照提示做一下。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
延长CD交圆O于点P,连接PA、PE;连接AO并延长,交CD于点Q,连接EQ。
设 ∠BAO = ∠CAO = α ,∠ACD = ∠BCD = β 。
因为,OG⊥CD,由垂径分弦,可得:∠EPC = ∠ECP = α ;
又 ∠APC = ∠ABC = 2α ,可得:∠APE = α 。
因为,∠PAQ = ∠PCB = β ,
∠PAQ = ∠PAD+∠DAQ = β+α = ∠ACD+∠CAO = ∠PQA ,
所以,PA = PQ 。
因为,PA = PQ ,∠APE = α = ∠QPE ,PE为公共边,
所以,△PAE ≌ △PQE ,
可得:AE = QE ,∠EQA = ∠EAQ = ∠DAQ ,
所以,EQ‖FD,且EF‖DQ,
可得:EFDQ为平行四边形,
所以,FD = EQ = AE 。
设 ∠BAO = ∠CAO = α ,∠ACD = ∠BCD = β 。
因为,OG⊥CD,由垂径分弦,可得:∠EPC = ∠ECP = α ;
又 ∠APC = ∠ABC = 2α ,可得:∠APE = α 。
因为,∠PAQ = ∠PCB = β ,
∠PAQ = ∠PAD+∠DAQ = β+α = ∠ACD+∠CAO = ∠PQA ,
所以,PA = PQ 。
因为,PA = PQ ,∠APE = α = ∠QPE ,PE为公共边,
所以,△PAE ≌ △PQE ,
可得:AE = QE ,∠EQA = ∠EAQ = ∠DAQ ,
所以,EQ‖FD,且EF‖DQ,
可得:EFDQ为平行四边形,
所以,FD = EQ = AE 。
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
延长CD交圆于M,连AM、EM,
因为OE垂直MC,由垂径定理,OE为MC的中垂线,
所以∠EMC=∠ECM=∠MCB,所以ME‖BC
所以∠AEC=∠ACB=∠ABC=∠AMC
又∠MAE=∠CAM,所以△MAE∽△CAM,所以∠AME=∠ACM=∠EMC
所以ME平分∠AMC,所以AF/FD=AE/EC=AM/MC(角平分线定理)
又∠MAB=∠MCB=∠ACM,∠AMC公共,所以△MAD∽△MCA
所以AF/FD=AM/MC=MD/AM=AD/AC
又EF‖CD,所以AF/FD=AD/AC=AF/AE
即AF/FD=AF/AE,所以AE=FD得证。
因为OE垂直MC,由垂径定理,OE为MC的中垂线,
所以∠EMC=∠ECM=∠MCB,所以ME‖BC
所以∠AEC=∠ACB=∠ABC=∠AMC
又∠MAE=∠CAM,所以△MAE∽△CAM,所以∠AME=∠ACM=∠EMC
所以ME平分∠AMC,所以AF/FD=AE/EC=AM/MC(角平分线定理)
又∠MAB=∠MCB=∠ACM,∠AMC公共,所以△MAD∽△MCA
所以AF/FD=AM/MC=MD/AM=AD/AC
又EF‖CD,所以AF/FD=AD/AC=AF/AE
即AF/FD=AF/AE,所以AE=FD得证。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询