这两个方法算出来答案不一样 10
展开全部
∫xarctan2xdx
=(1/2)∫arctan2xd(x²)
=(1/2)[x²*arctan2x-∫x²d(arctan2x)]
=(1/2)x²*arctan2x-(1/2)*∫x²[1/(1+4x²)]*2dx
=(1/2)x²*arctan2x-∫[x²/(1+4x²)]dx
=(1/2)x²*arctan2x-(1/4)∫[(4x²+1)-1]/(1+4x²)dx
=(1/2)x²*arctan2x-(1/4)x+(1/4)∫[1/(1+4x²)]dx
=(1/2)x²*arctan2x-(1/4)x+(1/8)∫[1/(1+4x²)]d(2x)
=(1/2)x²*arctan2x-(1/4)x+(1/8)arctan2x+C
=(1/2)∫arctan2xd(x²)
=(1/2)[x²*arctan2x-∫x²d(arctan2x)]
=(1/2)x²*arctan2x-(1/2)*∫x²[1/(1+4x²)]*2dx
=(1/2)x²*arctan2x-∫[x²/(1+4x²)]dx
=(1/2)x²*arctan2x-(1/4)∫[(4x²+1)-1]/(1+4x²)dx
=(1/2)x²*arctan2x-(1/4)x+(1/4)∫[1/(1+4x²)]dx
=(1/2)x²*arctan2x-(1/4)x+(1/8)∫[1/(1+4x²)]d(2x)
=(1/2)x²*arctan2x-(1/4)x+(1/8)arctan2x+C
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询