求曲面x^2+y^2+z^2=2z之内曲面z=x^2+y^2之外所围立体的体积

 我来答
我爱学习112
高粉答主

2021-10-21 · 每个回答都超有意思的
知道大有可为答主
回答量:7259
采纳率:100%
帮助的人:162万
展开全部

如下:

不定积分的公式

1、∫ a dx = ax + C,a和C都是常数

2、∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且 a ≠ -1

3、∫ 1/x dx = ln|x| + C

4、∫ a^x dx = (1/lna)a^x + C,其中a > 0 且 a ≠ 1

5、∫ e^x dx = e^x + C

6、∫ cosx dx = sinx + C

7、∫ sinx dx = - cosx + C

8、∫ cotx dx = ln|sinx| + C = - ln|cscx| + C

ljtyingwan
2019-06-07 · TA获得超过1704个赞
知道小有建树答主
回答量:1434
采纳率:68%
帮助的人:282万
展开全部
曲面x^2+y^2+z^2=2z之内曲面z=x^2+y^2之外所围立体的体积
直接代入方程
r(x~2+-2+22)ds
= T4 ds
=16
或将方程参数化然后计算
z2+32+A2=4
x+3+2=0
将=-x-3代入^2+y~2+2=4中
==>x2+y~2+xy=2
(x+y/2)2+(V3y/2)~2=2
fa: y/2 v2c0st
f v3y/2 28int
ニ2
(a =v2cost-(v6/3)sint, da =fv2sint-(V6/3)cost
dt
f y=(2v6/3)sint dy= -2v6/3)cost dt
f x=-v2cost -(v6/3)sint, d: v2sint-( v6/3)cos
dt
0st≤2a
ds =VI(da)2 +(dy)42+(dz)] dt v4 dt =2 dt
(x42+3y~2+22)ds
f(0-2)(v2cost-(v6/3)sint]/2 + [(2v6/3)sint]2
1v2cost-(v6/3)sint1 2) *2 dt
(0→2r)4大2dt
=16x
λ=½时,E为CC1中点,连接AC交BD于点O,连接OE,则O为AC中点,OE是ΔCAC1的中位线。
λ=1/4时,CE=½,在正方形ABCD中,易知AC=√2,连接AC交BD于点O,连接OE,则OC=√2/2
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
十全小秀才

2019-05-20 · 三人行必有我师焉!!
十全小秀才
采纳数:2251 获赞数:9386

向TA提问 私信TA
展开全部

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
liuqiang1078
2019-07-03 · TA获得超过10万个赞
知道大有可为答主
回答量:7033
采纳率:81%
帮助的人:3343万
展开全部


以上,请采纳。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式