数学归纳证明

证明:对大于2的一切正整数n,下列不等式成立(1+2+3+…+n)(1+1/2+1/3+…+1/n)≥n^2+n-1为什么首先n=1容易验证成立假设n=k成立n=k+1时... 证明:对大于2的一切正整数n,下列不等式成立(1+2+3+…+n)(1+ 1/2 + 1/3 +…+ 1/n) ≥ n^2+n-1
为什么
首先n=1容易验证成立
假设n=k成立 n=k+1时 有
(1+2+3+…+k)(1+1/2+1/3+…+1/k)+(k+1)*(1+1/2+1/3+…+1/k)+(1+2+3+…+k)*(1/(k+1)
(1+1/2+1/3+…+1/k)*(k+1)>2k+2
(1+2+3+…+k)*(1/(k+1)=k/2>0
(1+2+3+…+k)(1+1/2+1/3+…+1/k)>k^2+k-1
加一起..n=k+1成立
OK 这两步不会理解
(1+1/2+1/3+…+1/k)*(k+1)>2k+2
(1+2+3+…+k)*(1/(k+1)=k/2>0
展开
倦夜丶流光
2010-08-18 · TA获得超过172个赞
知道答主
回答量:23
采纳率:0%
帮助的人:0
展开全部
咳咳,应该是首先n=3容易验证成立(不是n=1哦~~)

假设n=k成立,即(1+2+3+…+k)(1+ 1/2 + 1/3 +…+ 1/k) ≥ k^2+k-1,

因为 1+2+3+…+k=k(k+1)/2,所以,
1+ 1/2 + 1/3 +…+ 1/k≥(k^2+k-1)/[k(k+1)/2]
n=k+1时 有
[1+2+3+…+k+(k+1)][1+ 1/2 + 1/3 +…+ 1/k+1/(k+1)]
=(1+2+3+…+k)(1+1/2+1/3+…+1/k)
+(k+1)(1+1/2+1/3+…+1/k)
+(1+2+3+…+k)[1/(k+1)]
+(k+1)[1/(k+1)]
≥k^2+k-1+(k+1) (k^2+k-1)/[k(k+1)/2]+k(k+1)/2*[1/(k+1)]+1
≥k^2+k-1+2(k+1)-2/k+k/2+1
≥(k+1)^2+(k+1)-1
因为k>2,-2/k+k/2≥0

这样可以理解吗?

静而后能思。共勉~
品一口回味无穷
2010-08-18 · TA获得超过2.9万个赞
知道大有可为答主
回答量:7234
采纳率:50%
帮助的人:2560万
展开全部
证明:
设:f(n)=(1+2+3+…+n)(1+ 1/2 + 1/3 +…+ 1/n)-n^2-n+1
f(3)=(1+2+3)(1+ 1/2 + 1/3)-9-3+1=6*11/6-9-3+1=0
f(n+1)-f(n)=(1+2+3+…+n+n+1)[1+ 1/2 + 1/3 +…+ 1/n+1/(n+1)]-(n+1)^2-n
-(1+2+3+…+n)(1+ 1/2 + 1/3 +…+ 1/n)+n^2+n-1
=1+(n+1)(1+ 1/2 + 1/3 +…+ 1/n)+(1+2+3+…+n)(n+1)-2n-2
>1+n+1+(n+1)^2-2n-2>0
f(n)单调递增。
f(n)>f(3)≥0
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
forestli1
2010-08-18 · TA获得超过5438个赞
知道大有可为答主
回答量:1132
采纳率:100%
帮助的人:661万
展开全部
(1+1/2+1/3+…+1/k)
=(1+1-1/2+1/3+1/6+。。。。+1/k)
=(2-(1/3+1/6-1/2)+。。。。1/k) 因为(1/3+1/6-1/2)=0
=(2+1/4+1/5+1/7+...)>2

所以(1+1/2+1/3+…+1/k)*(k+1)>2*(k+1)=2k+2

(1+2+3+…+k)= (1+k)*k/2 等比数列求和
所以(1+2+3+…+k)*(1/(k+1)
=(1+k)*k/2 *(1/(k+1)=k/2>0
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式