如图,在正方形ABCD中,P是对角线AC上的一点,点E在BC的延长线上,且PE=PB。

手机用户52538
2014-10-03 · TA获得超过100个赞
知道答主
回答量:103
采纳率:100%
帮助的人:116万
展开全部
证明: (1)∵AC是对角线 ∴∠ACD=∠ACB=45° ∵PC=PC,BC=DC ∴△BCP≌△DCP (2)∵PE=PB ∴∠PBC=∠PEC ∵△BCP≌△DCP ∴∠PBC=∠PDC ∴∠PBC=∠PDC=∠PEC 设PE与DC相交于F ∵∠PFC是△PDF与△PEC的外角 ∴∠PFC=∠DPE+∠PDC=∠PEC+∠DCE ∵∠PDC=∠PEC ∴∠DPE=∠DCE=∠ABC =90°
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式