若P(2,1)为圆x^2+y^2-2x-24=0的弦AB的中点,则直线AB的方程
1个回答
展开全部
若ab斜率存在
则设ab斜率是k
y=k(x+2)=kx+2k
所以(kx+2k)²=2x
k²x²+(4k²-2)x+4k²=0
x1+x2=-(4k²-2)/k²
y=kx+2k
所以y1+y2=k(x1+x2)+4k=2/k
中点则x=(x1+x2)/2,y=(y1+y2)/2
所以y/x=(2/k)/[-(4k²-2)/k²]=k/(1-2k²)
y=k(x+2)
所以k=y/(x+2)
代入
y(1-2k²)=kx
即y(x²+4x+4-2y²)=xy(x+2)
x²+4x+4-2y²=x²+2x
y²=x+2
有交点则k²x²+(4k²-2)x+4k²=0有解
判别式=16k^4-16k²+4-16k²>=0
k²<=1/4
-1/2<=k<=1/2
k²=1/4,则x=2
所以k²<=1/4,x>=2
若斜率不存在,则ab是x=-2
此时和抛物线没有交点
综上
y²=x+2,其中x>=2
则设ab斜率是k
y=k(x+2)=kx+2k
所以(kx+2k)²=2x
k²x²+(4k²-2)x+4k²=0
x1+x2=-(4k²-2)/k²
y=kx+2k
所以y1+y2=k(x1+x2)+4k=2/k
中点则x=(x1+x2)/2,y=(y1+y2)/2
所以y/x=(2/k)/[-(4k²-2)/k²]=k/(1-2k²)
y=k(x+2)
所以k=y/(x+2)
代入
y(1-2k²)=kx
即y(x²+4x+4-2y²)=xy(x+2)
x²+4x+4-2y²=x²+2x
y²=x+2
有交点则k²x²+(4k²-2)x+4k²=0有解
判别式=16k^4-16k²+4-16k²>=0
k²<=1/4
-1/2<=k<=1/2
k²=1/4,则x=2
所以k²<=1/4,x>=2
若斜率不存在,则ab是x=-2
此时和抛物线没有交点
综上
y²=x+2,其中x>=2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询