求助两道高中数学题~
1.椭圆X^2/a^2+y^2/b^2=1(a>b>0)的四个顶点A、B、C、D,若四边形ABCD的内切圆恰好过椭圆的焦点,则椭圆的离心率为__?2.中心在原点,一个焦点...
1.椭圆X^2/a^2+y^2/b^2=1(a>b>0)的四个顶点A、B、C、D,若四边形ABCD的内切圆恰好过椭圆的焦点,则椭圆的离心率为__?
2.中心在原点,一个焦点为F1(0.√50)的椭圆截直线Y=3X-2所得的弦的中点的横坐标为1/2.求椭圆方程. 展开
2.中心在原点,一个焦点为F1(0.√50)的椭圆截直线Y=3X-2所得的弦的中点的横坐标为1/2.求椭圆方程. 展开
展开全部
1、椭圆四顶点从X轴正方向开始,逆时针ABCD,
A(a,0),B(0,b),
直线AB方程:bx-ay-ab=0,
其内切圆半径=c,与直线AB距离也是c,圆心为原点,
根据点线距离公式,c=|-ab|/√(a^2+b^2)=ab/√(a^2+b^2),
c/a=b/√(a^2+b^2),
c/a=√(a^2-c^2)/√(2a^2-c^2),
离心率e=c/a,
e=√[(1-e^2)/(2-e^2)],
e^4-3e^2+1=0,
e=√[(3±√5)/2],
2、椭圆焦点在Y轴,设方程为:y^2/b^2+x^2/a^2=1,(b>a),
焦点F(0,5√2)
c=5√2,
则方程为:y^2/(a^2+50)+x^2/a^2=1,
设直线y=3x-2与椭圆相交于A、B两点,A(x1,y1),B(x2,y2),
(x1+x2)/2=1/2,x1+x2=1,
将直线方程代入椭圆方程,
(10a^2+50)x^2-12a^2x-(a^4+46a^2)=0,
根据韦达定理,
x1+x2=12a^2/(10a^2+50),
12a^2/(10a^2+50)=1,
a^2=25,
a=5,(舍去负值),
b^2=a^2+c^2=25+50=75,
故椭圆方程为:y^2/75+x^2/25=1.
A(a,0),B(0,b),
直线AB方程:bx-ay-ab=0,
其内切圆半径=c,与直线AB距离也是c,圆心为原点,
根据点线距离公式,c=|-ab|/√(a^2+b^2)=ab/√(a^2+b^2),
c/a=b/√(a^2+b^2),
c/a=√(a^2-c^2)/√(2a^2-c^2),
离心率e=c/a,
e=√[(1-e^2)/(2-e^2)],
e^4-3e^2+1=0,
e=√[(3±√5)/2],
2、椭圆焦点在Y轴,设方程为:y^2/b^2+x^2/a^2=1,(b>a),
焦点F(0,5√2)
c=5√2,
则方程为:y^2/(a^2+50)+x^2/a^2=1,
设直线y=3x-2与椭圆相交于A、B两点,A(x1,y1),B(x2,y2),
(x1+x2)/2=1/2,x1+x2=1,
将直线方程代入椭圆方程,
(10a^2+50)x^2-12a^2x-(a^4+46a^2)=0,
根据韦达定理,
x1+x2=12a^2/(10a^2+50),
12a^2/(10a^2+50)=1,
a^2=25,
a=5,(舍去负值),
b^2=a^2+c^2=25+50=75,
故椭圆方程为:y^2/75+x^2/25=1.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询