(n-1)S2/σ2服从χ2(n-1)分布求S^2的概率密度函数

 我来答
创作者2ySj2i7gyi
2019-06-06 · TA获得超过4049个赞
知道大有可为答主
回答量:3194
采纳率:30%
帮助的人:209万
展开全部
(均值用X* 表示,且可知X*=(∑Xi)/n)
Xi服从正态分布 N(μ,σ2),则
(Xi-μ)/σ 服从标准正态分布 N(0,1)
根据卡方分布的定义可知:∑(Xi-μ)2/σ2服从Χ2(n)分布
X*服从正态分布 N(μ,σ2/n),则
(X*-μ)/ (σ/n1/2) 服从标准正态分布 N(0,1)
∑(Xi-μ)2/σ2
=(1/σ2)∑[(Xi- X*)2+μ2- X*2-2XiX*+2Xiμ]
=(1/σ2)∑(Xi-X*)2+(1/σ2)∑(μ2-X*2+2XiX*-2Xiμ)
=(1/σ2)∑(Xi-X*)2+(1/σ2)[n(μ-X*)(μ+X*)-2(μ-X*)∑Xi]
=(1/σ2)∑(Xi-X*)2+(n/σ2)(μ-X*)[(μ+X*)-2(∑Xi)/n]
=(1/σ2)∑(Xi-X*)2+(n/σ2)(μ-X*)2
=(1/σ2)∑(Xi-X*)2+[(X*-μ)/ (σ/n1/2)]2
完整写出来的话,如下:
∑(Xi-μ)2/σ2=(1/σ2)∑(Xi-X*)2+[(X*-μ)/ (σ/n1/2)]2
∵(X*-μ)/ (σ/n1/2) 服从标准正态分布 N(0,1)
∴[(X*-μ)/ (σ/n1/2)]2服从Χ2(1)分布
又∵∑(Xi-μ)2/σ2服从Χ2(n)分布
∴(1/σ2)∑(Xi-X*)2=∑(Xi-μ)2/σ2-[(X*-μ)/ (σ/n1/2)]2
服从服从Χ2(n-1)分布
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式