如图四边形ABCD中,AC平分∠BAD,CE⊥AB于E,AE=1/2(AD+AB).求∠ADC+∠ABC的度数。
3个回答
展开全部
(有辅助线,请看附图)
解:∠ADC+∠ABC=180度,理由如下:
延长AB到点F,使BF=AD,连接CF
∴AF=AB+BF=AB+AD
∵AE=1/2(AD+AB)
∴AE=1/2AF
∴AE=EF
∵CE⊥AB于E
∴∠AEC=∠FEC=90度
在△AEC和△FEC中,
{AE=FE,∠AEC=∠FEC,CE=CE
∴△AEC≌△FEC
∴∠CAE=∠CFE,CA=CF
∵AC平分∠BAD
∴∠CAE=∠CAD
∴∠CAD=∠CFE(B)
在△ACD和△FCB中,
{CA=CF,∠CAD=∠CFB,AD=FB
∴△ACD≌△FCB
∴∠ADC=∠FBC
∴∠ADC+∠ABC=∠FBC+∠ABC=180度
表达能力有限,希望能够帮到您
展开全部
解:过C作CF垂直AD于F,
∵AC平分∠BAD,
∴∠FAC=∠EAC,
∵CE⊥AB,CF⊥AD,
∴∠DFC=∠CEB=90°,
∴△AFC≌△AEC,
∴AF=AE,CF=CE,
∵AE=
12(AB+AD),
∴2AE=AB+AD,
又∵AD=AF-DF,AB=AE+BE,AF=AE,
∴2AE=AE+BE+AE-DF,
∴BE=DF,
∵∠DFC=∠CEB=90°,CF=CE,
∴△CDF≌△CEB,
∴∠ABC=∠CDF,
∵∠ADC+∠CDF=180°,
∴∠ABC+∠ADC=180°.
∵AC平分∠BAD,
∴∠FAC=∠EAC,
∵CE⊥AB,CF⊥AD,
∴∠DFC=∠CEB=90°,
∴△AFC≌△AEC,
∴AF=AE,CF=CE,
∵AE=
12(AB+AD),
∴2AE=AB+AD,
又∵AD=AF-DF,AB=AE+BE,AF=AE,
∴2AE=AE+BE+AE-DF,
∴BE=DF,
∵∠DFC=∠CEB=90°,CF=CE,
∴△CDF≌△CEB,
∴∠ABC=∠CDF,
∵∠ADC+∠CDF=180°,
∴∠ABC+∠ADC=180°.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:过点C作CM垂直AD交AD的延长线于M
所以角CMD=角CMA=90度
因为CE垂直AB
所以角CEA=角CEB=90度
所以角CMD=角CEB=90度
角CMA=角CEA=90度
因为AC平分角BAD
所以角CAD=角CAB
因为AC=AC
所以三角形CMA全等三角形CEA (AAS)
所以CM=CE
AM=AE
因为AE=1/2(AD+AB)
AB=AE+BE
所以AM=AD+MD
所以AD+MD=1/2(AD+AD+MD+BE)
所以MD=BE
所以三角形CMD全等三角形CEB (SAS)
所以角CDM=角B
因为角ADC+角CDM=180度
所以角ADC+角B=180度
所以角CMD=角CMA=90度
因为CE垂直AB
所以角CEA=角CEB=90度
所以角CMD=角CEB=90度
角CMA=角CEA=90度
因为AC平分角BAD
所以角CAD=角CAB
因为AC=AC
所以三角形CMA全等三角形CEA (AAS)
所以CM=CE
AM=AE
因为AE=1/2(AD+AB)
AB=AE+BE
所以AM=AD+MD
所以AD+MD=1/2(AD+AD+MD+BE)
所以MD=BE
所以三角形CMD全等三角形CEB (SAS)
所以角CDM=角B
因为角ADC+角CDM=180度
所以角ADC+角B=180度
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询