(2007•温州)意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,
5,8,13,…,其中从第三个数起,每一个数都等于它前面两个数的和.现以这组数中的各个数作为正方形的长度构造如图正方形:再分别依次从左到右取2个,3个,4个,5个正方形拼...
5,8,13,…,其中从第三个数起,每一个数都等于它前面两个数的和.现以这组数中的各个数作为正方形的长度构造如图正方形:再分别依次从左到右取2个,3个,4个,5个正方形拼成如下矩形并记为①,②,③,④.相应矩形的周长如下表所示:序号 (1) (2) (3) (4)周长 6 10 16 26
展开
1个回答
展开全部
你好,很高兴为您解答!
这组数的前11个数分别是1,1,2,3,5,8,13,21,34,55,89,记做{ai}
第一个矩形的长b11=a1+a2,宽b12=a1,周长S1=(a1+a2+a1)X2,
第二个矩形长为b21=a2+a3,宽b22=b11,周长S2=(a2+a3+a1+a2)*2
归纳得到第N个矩形bn1=an+a(n+1),bn2=a(n-1)+an,Sn=(an+a(n+1)+a(n-1)+an)*2
则S10=(55+89+55+34)*2=466
这组数的前11个数分别是1,1,2,3,5,8,13,21,34,55,89,记做{ai}
第一个矩形的长b11=a1+a2,宽b12=a1,周长S1=(a1+a2+a1)X2,
第二个矩形长为b21=a2+a3,宽b22=b11,周长S2=(a2+a3+a1+a2)*2
归纳得到第N个矩形bn1=an+a(n+1),bn2=a(n-1)+an,Sn=(an+a(n+1)+a(n-1)+an)*2
则S10=(55+89+55+34)*2=466
追问
1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询