若函数f(x)=(x2-4)(x2+ax+b)的图像关于x=1对称,则方程f(x)=m有四个不同的实
若函数f(x)=(x2-4)(x2+ax+b)的图像关于x=1对称,则方程f(x)=m有四个不同的实数解时,实数m的取值范围是?...
若函数f(x)=(x2-4)(x2+ax+b)的图像关于x=1对称,则方程f(x)=m有四个不同的实数解时,实数m的取值范围是?
展开
1个回答
2013-12-26 · 知道合伙人教育行家
关注
展开全部
函数图像关于直线 x=1 对称,说明将图像向左平移 1 个单位后关于 y 轴对称,即是偶函数,
向左平移 1 个单位后为 g(x)=[(x+1)^2-4][(x+1)^2+a(x+1)+b]
=x^4+(a+4)x^3+(b+3a+2)x^2+(2b-a-4)x-3b-3a-3,
所以 a+4=0 ,2b-a-4=0 ,
解得 a= -4 ,b=0 ,
所以 f(x)=(x^2-4)(x^2-4x) ,
令 f '(x)=4x^3-12x^2-8x+16=0 得 x1=1-√5,x2=1,x3=1+√5 ,
所以函数的极小值为 f(x1)=f(x3)= -16 ,极大值为 f(x2)=9 ,
所以 m 的取值范围是 (-16,9)。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询