数列{an}是递增的等差数列,且a1+a6=-6,a3?a4=8.(1)求数列{an}的通项公式;(2)求数列{an}的前n项和

数列{an}是递增的等差数列,且a1+a6=-6,a3?a4=8.(1)求数列{an}的通项公式;(2)求数列{an}的前n项和Sn的最小值;(3)求数列{|an|}的前... 数列{an}是递增的等差数列,且a1+a6=-6,a3?a4=8.(1)求数列{an}的通项公式;(2)求数列{an}的前n项和Sn的最小值;(3)求数列{|an|}的前n项和Tn. 展开
 我来答
厦海绵宝宝啊
推荐于2016-07-21 · 超过68用户采纳过TA的回答
知道答主
回答量:125
采纳率:0%
帮助的人:129万
展开全部
(1)由
a1+a6=?6
a3?a4=8
得:
a3+a4=?6
a3?a4=8

∴a3、a4是方程x2+6x+8=0的二个根,
∴x1=-2,x2=-4;
∵等差数列{an}是递增数列,
∴a3=-4,a4=-2,
∴公差d=2,a1=-8.
∴an=2n-10;
(2)∵Sn=
n(a1+an)
2
=n2-9n=(n?
9
2
)
2
-
81
4

∴(Snmin=S4=S5=-20;
(3)由an≥0得2n-10≥0,解得n≥5,此数列前四项为负的,第五项为0,从第六项开始为正的.
当1≤n≤5且n∈N*时,
Tn=|a1|+|a2|+…+|an|
=-(a1+a2+…+an
=-Sn
=-n2+9n;
当n≥6且n∈N*时,
Tn=|a1|+|a2|+…+|a5|+|a6|+…+|an|
=-(a1+a2+…+a5)+(a6+…+an
=Sn-2S5
=n2-9n-2(25-45)
=n2-9n+40.
∴Tn=
9n?n2,1≤n≤5,n∈N*
n2?9n+40,n≥6,n∈N*
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式