如图,正方形ABCD的边长为4,E是BC边的中点,点P在射线AD上,过P作PF⊥AE于F,设PA=x.(1)求证:△PFA
如图,正方形ABCD的边长为4,E是BC边的中点,点P在射线AD上,过P作PF⊥AE于F,设PA=x.(1)求证:△PFA∽△ABE;(2)若以P,F,E为顶点的三角形也...
如图,正方形ABCD的边长为4,E是BC边的中点,点P在射线AD上,过P作PF⊥AE于F,设PA=x.(1)求证:△PFA∽△ABE;(2)若以P,F,E为顶点的三角形也与△ABE相似,试求x的值.
展开
1个回答
展开全部
(1)证明:∵四边形ABCD是正方形,
∴AD∥BC,且∠ABE=90°,
∴∠PAF=∠AEB,
又∵PF⊥AE,
∴∠PFA=∠ABE=90°
∴△PFA∽△ABE;
(2)解:①当△EFP∽△ABE,且∠PEF=∠EAB时,
则有PE∥AB
∴四边形ABEP为矩形,
∴PA=EB=2,即x=2.
②当△PFE∽△ABE,且∠PEF=∠AEB时,
∵∠PAF=∠AEB
∴∠PEF=∠PAF,
∴PE=PA
∵PF⊥AE,
∴点F为AE的中点,
∵AE=
=
=
=2
∴EF=
AE=
由
=
,
即
=
得PE=5,
即x=5
故满足条件的x的值为2或5.
∴AD∥BC,且∠ABE=90°,
∴∠PAF=∠AEB,
又∵PF⊥AE,
∴∠PFA=∠ABE=90°
∴△PFA∽△ABE;
(2)解:①当△EFP∽△ABE,且∠PEF=∠EAB时,
则有PE∥AB
∴四边形ABEP为矩形,
∴PA=EB=2,即x=2.
②当△PFE∽△ABE,且∠PEF=∠AEB时,
∵∠PAF=∠AEB
∴∠PEF=∠PAF,
∴PE=PA
∵PF⊥AE,
∴点F为AE的中点,
∵AE=
AB2+BE2 |
42+22 |
20 |
5 |
∴EF=
1 |
2 |
5 |
由
PE |
AE |
EF |
EB |
即
PE | ||
2
|
| ||
2 |
得PE=5,
即x=5
故满足条件的x的值为2或5.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询