如图1,在平面直角坐标系中,已知矩形OABC,点A、C分别在x轴、y轴上,点B(8,4),点P是BC的中点,点Q(
如图1,在平面直角坐标系中,已知矩形OABC,点A、C分别在x轴、y轴上,点B(8,4),点P是BC的中点,点Q(x,0)(0<x<8)是x轴上一动点,QM⊥OP,QN⊥...
如图1,在平面直角坐标系中,已知矩形OABC,点A、C分别在x轴、y轴上,点B(8,4),点P是BC的中点,点Q(x,0)(0<x<8)是x轴上一动点,QM⊥OP,QN⊥AP,M、N为垂足,连接MN.(1)四边形PMQN能否为正方形?若能,求出此时动点Q的坐标;若不能,说明理由;(2)设三角形△MQN的面积为S1,求S1与x的函数关系式,并确定S1的取值范围;(3)如图(2),设点P关于x轴的对称为点D,△MDN的面积为S2,求S2与x的函数关系式,并确定S2的取值范围.
展开
展开全部
(1)能,此时点Q(4,0).
理由:∵四边形ABCO是矩形,
∴AO=BC,AB=OC,∠A=∠B=∠C=∠AOC=90°.
∵B(8,4),
∴OA=BC=8,AB=OC=4.
∵P是BC的中点,
∴PC=PB=
BC=4,
∴OC=PC,PB=AB,
∴∠POC=∠PAB=45°.
∴∠POA=∠PAO=45°,
∴△APO是等腰直角三角形.
∴∠OPA=90°.OP=AP.
∴QM⊥OP,QN⊥AP,
∴∠PMQ=∠PNQ=∠OMQ=∠ANQ=90°,
∴四边形MQNP是矩形,△OMQ和△ANQ是等腰直角三角形.
∵四边形MQNP是正方形,
∴MQ=NQ=PM=PN.
∴OM=AN,
∵在△OMQ和△ANQ中,
,
∴△OMQ≌△ANQ(SAS),
∴OQ=AQ.
∴Q(4,0)
∴Q(4,0)时四边形PMQN是正方形;
(2)如图1,∵Q(x,0),
∴OQ=x
∴AQ=8-x
∵△POA和△ANQ是等腰直角三角形,由勾股定理,得
∴QM=PN=
x,QN=AN=
(8?x).
∵四边形PMQN是矩形,
∴∠MQN=90°
∴S1=
QM?QN=?
x2+2x.
∴S1=?
x2+2x=?
(x?4)2+4,
∴0<S1≤4;
(3)如图2,连接DO、DA,
∵△OPA和△ODA关于x轴对称,
∴△OPA≌△ODA,
∴OP=OD,PA=AD.
∵OP=AP,∠OPA=90°
∴得PODA是正方形.
∵S2=SPODA-S△DOM-S△DAN-S△MPN,
∴S2=(4
理由:∵四边形ABCO是矩形,
∴AO=BC,AB=OC,∠A=∠B=∠C=∠AOC=90°.
∵B(8,4),
∴OA=BC=8,AB=OC=4.
∵P是BC的中点,
∴PC=PB=
1 |
2 |
∴OC=PC,PB=AB,
∴∠POC=∠PAB=45°.
∴∠POA=∠PAO=45°,
∴△APO是等腰直角三角形.
∴∠OPA=90°.OP=AP.
∴QM⊥OP,QN⊥AP,
∴∠PMQ=∠PNQ=∠OMQ=∠ANQ=90°,
∴四边形MQNP是矩形,△OMQ和△ANQ是等腰直角三角形.
∵四边形MQNP是正方形,
∴MQ=NQ=PM=PN.
∴OM=AN,
∵在△OMQ和△ANQ中,
|
∴△OMQ≌△ANQ(SAS),
∴OQ=AQ.
∴Q(4,0)
∴Q(4,0)时四边形PMQN是正方形;
(2)如图1,∵Q(x,0),
∴OQ=x
∴AQ=8-x
∵△POA和△ANQ是等腰直角三角形,由勾股定理,得
∴QM=PN=
| ||
2 |
| ||
2 |
∵四边形PMQN是矩形,
∴∠MQN=90°
∴S1=
1 |
2 |
1 |
4 |
∴S1=?
1 |
4 |
1 |
4 |
∴0<S1≤4;
(3)如图2,连接DO、DA,
∵△OPA和△ODA关于x轴对称,
∴△OPA≌△ODA,
∴OP=OD,PA=AD.
∵OP=AP,∠OPA=90°
∴得PODA是正方形.
∵S2=SPODA-S△DOM-S△DAN-S△MPN,
∴S2=(4
2 |