如图1,在平面直角坐标系中,已知矩形OABC,点A、C分别在x轴、y轴上,点B(8,4),点P是BC的中点,点Q(

如图1,在平面直角坐标系中,已知矩形OABC,点A、C分别在x轴、y轴上,点B(8,4),点P是BC的中点,点Q(x,0)(0<x<8)是x轴上一动点,QM⊥OP,QN⊥... 如图1,在平面直角坐标系中,已知矩形OABC,点A、C分别在x轴、y轴上,点B(8,4),点P是BC的中点,点Q(x,0)(0<x<8)是x轴上一动点,QM⊥OP,QN⊥AP,M、N为垂足,连接MN.(1)四边形PMQN能否为正方形?若能,求出此时动点Q的坐标;若不能,说明理由;(2)设三角形△MQN的面积为S1,求S1与x的函数关系式,并确定S1的取值范围;(3)如图(2),设点P关于x轴的对称为点D,△MDN的面积为S2,求S2与x的函数关系式,并确定S2的取值范围. 展开
 我来答
老小解你级2714
2014-09-16 · 超过64用户采纳过TA的回答
知道答主
回答量:189
采纳率:0%
帮助的人:142万
展开全部
(1)能,此时点Q(4,0).
理由:∵四边形ABCO是矩形,
∴AO=BC,AB=OC,∠A=∠B=∠C=∠AOC=90°.
∵B(8,4),
∴OA=BC=8,AB=OC=4.
∵P是BC的中点,
∴PC=PB=
1
2
BC=4,
∴OC=PC,PB=AB,
∴∠POC=∠PAB=45°.
∴∠POA=∠PAO=45°,
∴△APO是等腰直角三角形.
∴∠OPA=90°.OP=AP.
∴QM⊥OP,QN⊥AP,
∴∠PMQ=∠PNQ=∠OMQ=∠ANQ=90°,
∴四边形MQNP是矩形,△OMQ和△ANQ是等腰直角三角形.
∵四边形MQNP是正方形,
∴MQ=NQ=PM=PN.
∴OM=AN,
∵在△OMQ和△ANQ中,
OM=AN
∠OMQ=∠ANQ
MQ=NQ

∴△OMQ≌△ANQ(SAS),
∴OQ=AQ.
∴Q(4,0)
∴Q(4,0)时四边形PMQN是正方形;

(2)如图1,∵Q(x,0),
∴OQ=x
∴AQ=8-x
∵△POA和△ANQ是等腰直角三角形,由勾股定理,得
QM=PN=
2
2
x
QN=AN=
2
2
(8?x)

∵四边形PMQN是矩形,
∴∠MQN=90°
S1
1
2
QM?QN=?
1
4
x2+2x

S1=?
1
4
x2+2x=?
1
4
(x?4)2+4

∴0<S1≤4;

(3)如图2,连接DO、DA,
∵△OPA和△ODA关于x轴对称,
∴△OPA≌△ODA,
∴OP=OD,PA=AD.
∵OP=AP,∠OPA=90°
∴得PODA是正方形.
∵S2=SPODA-S△DOM-S△DAN-S△MPN
S2(4
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
  • 个人、企业类侵权投诉
  • 违法有害信息,请在下方选择后提交

类别

  • 色情低俗
  • 涉嫌违法犯罪
  • 时政信息不实
  • 垃圾广告
  • 低质灌水

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消
2