已知数列{a n },{b n }满足a 1 =2,2a n =1+a n a n+1 ,b n =a n -1,数列{b n }的前n项和为S n ,T n
已知数列{an},{bn}满足a1=2,2an=1+anan+1,bn=an-1,数列{bn}的前n项和为Sn,Tn=S2n-Sn.(1)求证:数列{1bn}为等差数列,...
已知数列{a n },{b n }满足a 1 =2,2a n =1+a n a n+1 ,b n =a n -1,数列{b n }的前n项和为S n ,T n =S 2n -S n .(1)求证:数列 { 1 b n } 为等差数列,并求通项b n ;(2)求证:T n+1 >T n ;(3)求证:当n≥2时, S 2 n ≥ 7n+11 12 .
展开
(1)由b n =a n -1,得a n =b n +1,代入2a n =1+a n a n+1 , 得2(b n +1)=1+(b n +1)(b n+1 +1), ∴b n b n+1 +b n+1 -b n =0,从而有 - =1 , ∵b 1 =a 1 -1=2-1=1, ∴ { } 是首项为1,公差为1的等差数列, ∴ =n ,即 b n = ;(5分) (2)∵ S n =1+ ++ , ∴ T n = S 2n - S n = + ++ , T n+1 = + ++ + + , T n+1 - T n = + - > + - =0 , ∴T n+1 >T n ;(10分) (3)∵n≥2, ∴ S 2 n = S 2 n - S 2 n-1 + S 2 n-1 - S 2 n-2 ++ S 2 - S 1 + S 1 = T 2 n-1 + T 2 n-2 +…+T 2 +T 1 +S 1 . 由(2)知 T 2 n-1 ≥ T 2 n-2 ≥…≥T 2 ≥T 1 ≥S 1 , ∵ T 1 = , S 1 =1, T 2 = , ∴ S 2 n = T 2 n-1 + T 2 n-2 +…+T 2 +T 1 +S 1 ≥(n-1)T 2 +T 1 +S 1 = (n-1)+ +1 = .(16分) |
收起
为你推荐: