数学高中:定义数列如下:a1=1/2,a(n+1)=an²+an,n∈N*,求证:(1)对于n∈N*恒有a(n+1)>an成立 10
定义数列如下:a1=1/2,a(n+1)=an²+an,n∈N*,求证:(1)对于n∈N*恒有a(n+1)>an成立;(2)对于n≥2时,1<1/(1+a1)<...
定义数列如下:a1=1/2,a(n+1)=an²+an,n∈N*,
求证:(1)对于n∈N*恒有a(n+1)>an成立;(2)对于n≥2时,1<1/(1+a1)<1/(1+a2)+…+1/(1+an)<2
求详解,要步骤。谢谢 展开
求证:(1)对于n∈N*恒有a(n+1)>an成立;(2)对于n≥2时,1<1/(1+a1)<1/(1+a2)+…+1/(1+an)<2
求详解,要步骤。谢谢 展开
1个回答
展开全部
∵a₁=1/2,an₊₁=a²n+an,∴an₊₁>an>0,
1/an₊₁=1/(a²n+an)=1/an-1/(an+1),
累加后得1/an₊₁=1/a₁-1/(a₁+1)-1/(a₂+1)+1/(a₃+1)-1/(a₄+1)-……-1/(an+1) ,
1/an₊₁=2-1/(a₁+1)-1/(a₂+1)+1/(a₃+1)-1/(a₄+1)-……-1/(an+1) ,
1/an₊₁+1/(a₁+1)+1/(a₂+1)+1/(a₃+1)+1/(a₄+1)+……+1/(an+1)=2,
∴1/(a₁+1)+1/(a₂+1)+1/(a₃+1)+1/(a₄+1)+……+1/(an+1)<2,
∵a₁=1/2,a₂=3/4,∴1/(a₁+1)+1/(a₂+1)=2/3+4/7=26/21>1,
∴ n≥2时,1<1/(a₁+1)+1/(a₂+1)+1/(a₃+1)+1/(a₄+1)+……+1/(an+1)<2,证毕。
1/an₊₁=1/(a²n+an)=1/an-1/(an+1),
累加后得1/an₊₁=1/a₁-1/(a₁+1)-1/(a₂+1)+1/(a₃+1)-1/(a₄+1)-……-1/(an+1) ,
1/an₊₁=2-1/(a₁+1)-1/(a₂+1)+1/(a₃+1)-1/(a₄+1)-……-1/(an+1) ,
1/an₊₁+1/(a₁+1)+1/(a₂+1)+1/(a₃+1)+1/(a₄+1)+……+1/(an+1)=2,
∴1/(a₁+1)+1/(a₂+1)+1/(a₃+1)+1/(a₄+1)+……+1/(an+1)<2,
∵a₁=1/2,a₂=3/4,∴1/(a₁+1)+1/(a₂+1)=2/3+4/7=26/21>1,
∴ n≥2时,1<1/(a₁+1)+1/(a₂+1)+1/(a₃+1)+1/(a₄+1)+……+1/(an+1)<2,证毕。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询