数学难题!!!!
如图,P是等边三角形ABC内的一点,连结边作∠PBQ=60°,且BQ=BP,连结CQ(1)观察并猜想AP与CQ之间的大小关系,并证明你的结论。(2)若PA:PB:PC=3...
如图,P是等边三角形ABC内的一点,连结边作∠PBQ=60°,且BQ=BP,连结CQ
(1)观察并猜想AP与CQ之间的大小关系,并证明你的结论。
(2)若PA:PB:PC=3:4:5,连接PQ,试判断△PQC的形状,并说明原因。 展开
(1)观察并猜想AP与CQ之间的大小关系,并证明你的结论。
(2)若PA:PB:PC=3:4:5,连接PQ,试判断△PQC的形状,并说明原因。 展开
1个回答
展开全部
(1)猜想:AP=CQ.证明如下:
在△ABP与△CBQ中,∵AB=CB,BP=BQ,∠ABC=∠PBQ=60°,所以△BCQ可以看作是△BAP绕点B顺时针旋转60°而得到的.∴AP=CQ.
(2)由PA∶PB∶PC=3∶4∶5,可设PA=3a,PB=4a,PC=5a.
连接PQ,在△PBQ中,由于PB=BQ=4a,且∠PBQ=60°.
∴△PBQ为正三角形.∴PQ=4a.
于是在△PQC中,∵PQ2+QC2=16a2+9a2=25a2=PC2.
∴△PQC是直角三角形,∠PQC=90°.
在△ABP与△CBQ中,∵AB=CB,BP=BQ,∠ABC=∠PBQ=60°,所以△BCQ可以看作是△BAP绕点B顺时针旋转60°而得到的.∴AP=CQ.
(2)由PA∶PB∶PC=3∶4∶5,可设PA=3a,PB=4a,PC=5a.
连接PQ,在△PBQ中,由于PB=BQ=4a,且∠PBQ=60°.
∴△PBQ为正三角形.∴PQ=4a.
于是在△PQC中,∵PQ2+QC2=16a2+9a2=25a2=PC2.
∴△PQC是直角三角形,∠PQC=90°.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询