已知函数f(x)=kex,g(x)=1klnx,其中k>0.若函数f(x),g(x)在它们的图象与坐标轴交点处的切线互

已知函数f(x)=kex,g(x)=1klnx,其中k>0.若函数f(x),g(x)在它们的图象与坐标轴交点处的切线互相平行.(1)求k的值;(2)是否存在直线l,使得l... 已知函数f(x)=kex,g(x)=1klnx,其中k>0.若函数f(x),g(x)在它们的图象与坐标轴交点处的切线互相平行.(1)求k的值;(2)是否存在直线l,使得l同时是函数f(x),g(x)的切线?说明理由.(3)若直线x=a(a>0)与f(x)、g(x)的图象分别交于A、B两点,直线y=b(b>0)与h(x)的图象有两个不同的交点C、D.记以A、B、C、D为顶点的凸四边形面积为S,求证:S>2. 展开
 我来答
俆罿崄译渗鮛啇
2014-12-16 · 超过56用户采纳过TA的回答
知道答主
回答量:116
采纳率:0%
帮助的人:106万
展开全部
解答:(1)解:f(x),g(x)与坐标轴的交点分别为(0,k),(1,0),
由f(x)=kex,g(x)=
1
k
lnx,得f′(x)=kex,g′(x)=
1
kx

由题意知f′(0)=g′(1),即k=
1
k
,又k>0,所以k=1.            …2分
(2)解:假设存在直线l同时是函数f(x),g(x)的切线,
设l与f(x),g(x)分别相切于点M(m,em),N(n,lnn)(n>0),
则l:y-em=em(x-m)或表示为y-lnn=
1
n
(x-n),
则em=
1
n
,且em(1-m)=lnn-1,要说明l是否存在,只需说明上述方程组是否有解.…4分
由em=
1
n
得n=e-m,代入em(1-m)=lnn-1,得em(1-m)=-m-1,即em(1-m)+m+1=0,
令h(m)=em(1-m)+m+1,
因为h(1)=2>0,h(2)=-e2+3<0,所以方程em(1-m)+m+1=0有解,则方程组有解,
故存在直线l,使得l同时是函数f(x),g(x)的切线.                 …8分
(3)证明:设A(x0ex0),B(x0,lnx0),则AB=|ex0-lnx0|,
设F(x)=ex0-lnx0,∴G(x)=F′(x)=ex0-
1
x0

∴G′(x)=ex0+
1
x02
>0,即G(x)在(0,+∞)上单调递增,
又G(0.5)=
e
-2<0,G(1)=e-1>0,
故G(x)在(0,+∞)上有唯一零点,设为t∈(0.5,1),则et-
1
t
=0,因此t=-lnt,
当x∈(0,t)时,F′(x)=G(x)<G(t)=0,∴F(x)在(0,t)上单调递减;
当x∈(t,+∞)时,F′(x)=G(x)>G(t)=0,∴F(x)在(t,+∞)上单调递增,
因此F(x)≥F(t)=et-lnt=
1
t
+t,
由于t∈(0.5,1),∴F(x)=
1
t
+t>2,则AB=|ex0-lnx0|>2.…14分
设C(x1ex1),D(x2,lnx2),则ex1=lnx2,令ex1=lnx2=u,则x1=lnu,x2=eu
∴CD=|x2-x1|=|eu-lnu|>2,
故S=
1
2
AB?CD>
1
2
?2?2=2.                          …16分.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式