在三角形abc中,角平分线ad,be,cf相交于点h,过h点作hg垂直于ab,垂足为g,那么角ahf=角bhg吗

 我来答
翁鸣索晋
2020-04-18 · TA获得超过3.2万个赞
知道大有可为答主
回答量:1.2万
采纳率:27%
帮助的人:690万
展开全部
三角形ABC中,角平分线AD,BE,CF相交于点H,过H点作HG垂直AC,垂足为G,那么角AHE=角CHG.为什么?
解:
因为AD、BE、CF是角平分线
所以
∠BAD=∠BAC/2
∠ABE=∠ABC/2
∠ACF=∠ACB/2
所以
∠AHE=∠BAD+∠ABE
=∠BAC/2+∠ABC/2
=(∠BAC+∠ABC)/2
=(180°-∠BCA)/2
=90°-∠BCA/2
=90°-∠ACF
=90°-∠GCH
因为HE⊥AC
所以∠CHG=90°-∠GCH
所以∠AHE=∠CHG
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式