随机变量的独立性是指什么?
事件的相互独立可定义试验的相互独立,试验的相互独立可推出一些事件的相互独立。试验的独立性和随机变量的独立性都是在事件独立性的基础上来定义的【1】。随机变量取某个值或取某个连续区间时,就是表示某事件。
再用前面的X和Y的例子,X表示一个人的身高(cm),则{X>160}表示“此人身高超过160厘米”这个事件,记为A。Y表示另一个人的月收入(元)
则{Y=12000}表示“此人的月收入为12000元”,此事件记为B,因为X和Y是独立的,故A和B也是独立的。X,Y还可以生成很多个事件。因此随机变量的独立性是指由他们生成的所有的事件都独立。
扩展资料
随机变量(random variable)表示随机现象(在一定条件下,并不总是出现相同结果的现象称为随机现象)各种结果的变量(一切可能的样本点)。例如,某一时间内公共汽车站等车乘客人数,电话交换台在一定时间内收到的呼叫次数等,都是随机变量的实例。
在经济活动中,随机变量是某一事件在相同的条件下可能发生也可能不发生的事件。例如某一时间内公共汽车站等车乘客人数,电话交换台在一定时间内收到的呼叫次数等等,都是随机变量的实例。
按照随机变量可能取得的值,可以把它们分为两种基本类型:离散型随机变量,即在一定区间内变量取值为有限多个,或数值可以一一列举出来。例如某地区某年人口的出生数、死亡数,某药治疗某病病人的有效数、无效数等;连续型随机变量,即在一定区间内变量取值有无限人,或数值无法一一列举出来。
参考资料来源:百度百科-随机变量