f(x)=x/sinx的间断点是什么?

 我来答
吃货宝妈一枚
2022-10-03 · TA获得超过1.4万个赞
知道小有建树答主
回答量:147
采纳率:100%
帮助的人:5.2万
展开全部

间断点:x=0。

类型:第一类可去间断点。

详细解答:

函数f(x)=x/sinx,在区间(-2π,2π)上,
显然只有x= -π,0和π时,分母sinx=0,可能是间断点,
在x= -π和π时,sinx=0,而分子x不等于0,
故 x/sinx此时趋于无穷大,
即x= -π和x=π是f(x)=x/sinx的无穷间断点
而在x=0时,
f(x)=x/sinx 在x=0处的左右极限存在且相等(都为1),
所以x=0是f(x)=x/sinx 的可去间断点。

间断点定义:在非连续函数y=f(x)中某点处xo处有中断现象,那么,xo就称为函数的不连续点。

可去间断点:属于非无穷间断点,表示存在极限,与之相对的是不存在极限,即跳跃间断点。去间断点和跳跃间断点称为第一类间断点,也叫有限型间断点。其它间断点称为第二类间断点。

第一类间断点和第二类间断点的区别:

函数f(x)在第一类间断点的左右极限都存在,而函数f(x)在第二类间断点的左右极限至少有一个不存在

西域牛仔王4672747
2022-11-11 · 知道合伙人教育行家
西域牛仔王4672747
知道合伙人教育行家
采纳数:30591 获赞数:146328
毕业于河南师范大学计算数学专业,学士学位, 初、高中任教26年,发表论文8篇。

向TA提问 私信TA
展开全部
f(x)=x / sinx 的间断点是使分母为 0 的点,
即 sinx=0 的点,
也就是 x=kπ,k∈Z 。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式