矩阵可以相似对角化吗

 我来答
老八趣谈数码科技
高能答主

2023-07-02 · 数码科技小能手,热爱回答数码科技小知识与技巧
老八趣谈数码科技
采纳数:2 获赞数:5889

向TA提问 私信TA
展开全部

如果是实对称矩阵(可相似对角化矩阵)就可以,行列式就是特征值的乘积,秩就是非零特征值的个数。

特征值是指设A 是n阶方阵,如果存在数m和非零n维列向量x,使得Ax=mx 成立,则称m 是A的一个特征值(characteristic value)或本征值(eigenvalue)。

非零n维列向量x称为矩阵A的属于(对应于)特征值m的特征向量或本征向量,简称A的特征向量或A的本征向量。

特征值的性质:

特征值相同的特征向量相加还是特征向量,结合前面特征向量还可以任意伸缩,那么这特征值相同的两个不同方向(线性无关)特征向量可以张成一个平面,这个平面中的任何向量都是特征向量。也就是说一个特征值有几个线性无关的特征向量,他就可以有一个对应的几维特征空间。

矩阵的两种含义对应着秩的两种含义,当矩阵表示运动的时候秩代表运动到哪个维度。当矩阵表示空间的时候,秩表示这个空间的维度。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式