Y=sinxcosx/(1+sinx+cosx)的值域 (过程)

zybtony
2010-08-27 · TA获得超过1.3万个赞
知道大有可为答主
回答量:1685
采纳率:0%
帮助的人:2584万
展开全部
方法一:
设tanx/2=t(后面写起来方便)
原式=[2t/(1+t^2)]*[(1-t^2)/(1+t^2)]/[1+2t/(1+t^2)+(1-t^2)/(1+t^2)/
=2t(1-t^2)/(2t+2) 约分,注意约掉的2*(1+t)≠0,即t≠-1
=(-t^2+t)/(t^2+1) (t≠-1)
=(t+1)/(t^2+1)-1 (t≠-1)
=1/[(t+1)+2/(t+1)-2]-1
分母可以把t+1看成一个变量y,y∈(-∞,0)∪(0,+∞),是个NIKE函数(或钩函数)
求出其范围2(-∞,-2-2√2]∪[-2+2√2,+∞),再求倒数范围,最后-1
答案是 值域为[-(1+√2)/2,-1)∪(-1,(√2-1)/2]

方法二:
假设sinx+cosx=√2sin(x+45)=t
-√2<=t<=√2
y=(sinxcosx)/(1+sinx+cosx)
=1/2[(cosx+sinx)^2-1]/(1+sinx+cosx)
=1/2(t^2-1)/(1+t)
=1/2t-1/2,t≠-1
-(√2+1)/2<=y<=(√2-1)/2且y≠-1

祝您学习愉快
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式