定义[ a,b,c]为函数y=ax2+bx+c 的特征数, 下面给出特征数为 [2m,1 – m , –1– m] 的函数 5
下面给出特征数为[2m,1–m,–1–m]的函数的一些结论:①当m=–3时,函数图象的顶点坐标是(,);②当m>0时,函数图象截x轴所得的线段长度大于;③当m<0时,函数...
下面给出特征数为 [2m,1 – m , –1– m] 的函数的一些结论:
① 当m = – 3时,函数图象的顶点坐标是( , );
② 当m > 0时,函数图象截x轴所得的线段长度大于 ;
③ 当m < 0时,函数在x > 时,y随x的增大而减小;
④ 当m 0时,函数图象经过同一个点.
其中正确的结论有( B )
A. ①②③④ B. ①②④ C. ①③④ D. ②④ 展开
① 当m = – 3时,函数图象的顶点坐标是( , );
② 当m > 0时,函数图象截x轴所得的线段长度大于 ;
③ 当m < 0时,函数在x > 时,y随x的增大而减小;
④ 当m 0时,函数图象经过同一个点.
其中正确的结论有( B )
A. ①②③④ B. ①②④ C. ①③④ D. ②④ 展开
2个回答
展开全部
因为函数y=ax2+bx+c的特征数为[2m,1-m,-1-m];
①当m=-3时,y=-6x2+4x+2=-6(x-
1
3
)2+
8
3
,顶点坐标是(
1
3
,
8
3
);此结论正确;
②当m>0时,令y=0,有2mx2+(1-m)x+(-1-m)=0,解得x=
(m-1)±(3m+1)
4m
,x1=1,x2=-
1
2
-
1
2m
,
|x2-x1|=
3
2
+
1
2m
>
3
2
,所以当m>0时,函数图象截x轴所得的线段长度大于
3
2
,此结论正确;
③当m<0时,y=2mx2+(1-m)x+(-1-m) 是一个开口向下的抛物线,其对称轴是:
m-1
4m
,在对称轴的右边y随x的增大而减小.因为当m<0时,
m-1
4m
=
1
4
-
1
4m
>
1
4
,即对称轴在x=
1
4
右边,因此函数在x=
1
4
右边先递增到对称轴位置,再递减,此结论错误;
④当x=1时,y=2mx2+(1-m)x+(-1-m)=2m+(1-m)+(-1-m)=0 即对任意m,函数图象都经过点(1,0)那么同样的:当m=0时,函数图象都经过同一个点(1,0),当m≠0时,函数图象经过同一个点(1,0),故当m≠0时,函数图象经过x轴上一个定点此结论正确.
根据上面的分析,①②④都是正确的,③是错误的.
故答案为:①②④.
①当m=-3时,y=-6x2+4x+2=-6(x-
1
3
)2+
8
3
,顶点坐标是(
1
3
,
8
3
);此结论正确;
②当m>0时,令y=0,有2mx2+(1-m)x+(-1-m)=0,解得x=
(m-1)±(3m+1)
4m
,x1=1,x2=-
1
2
-
1
2m
,
|x2-x1|=
3
2
+
1
2m
>
3
2
,所以当m>0时,函数图象截x轴所得的线段长度大于
3
2
,此结论正确;
③当m<0时,y=2mx2+(1-m)x+(-1-m) 是一个开口向下的抛物线,其对称轴是:
m-1
4m
,在对称轴的右边y随x的增大而减小.因为当m<0时,
m-1
4m
=
1
4
-
1
4m
>
1
4
,即对称轴在x=
1
4
右边,因此函数在x=
1
4
右边先递增到对称轴位置,再递减,此结论错误;
④当x=1时,y=2mx2+(1-m)x+(-1-m)=2m+(1-m)+(-1-m)=0 即对任意m,函数图象都经过点(1,0)那么同样的:当m=0时,函数图象都经过同一个点(1,0),当m≠0时,函数图象经过同一个点(1,0),故当m≠0时,函数图象经过x轴上一个定点此结论正确.
根据上面的分析,①②④都是正确的,③是错误的.
故答案为:①②④.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询