已知数列{an}的前n项和为Sn,若a1=0,n?an+1=Sn+n(n+1),(1)求数列{an}的通项公式;(2)若数列{bn}
已知数列{an}的前n项和为Sn,若a1=0,n?an+1=Sn+n(n+1),(1)求数列{an}的通项公式;(2)若数列{bn}满足an+log3n=log3bn,求...
已知数列{an}的前n项和为Sn,若a1=0,n?an+1=Sn+n(n+1),(1)求数列{an}的通项公式;(2)若数列{bn}满足an+log3n=log3bn,求数列{bn}的前n项和;(3)设Pn=a1+a4+a7+…+a3n-2,Qn=a10+a12+a14+…+a2n+8,其中n∈N*,试比较Pn与Qn的大小,并证明你的结论.
展开
展开全部
(1)把n=1,代入n?an+1=Sn+n(n+1)得:1?a2=S1+1=a1+1=2+1=3,即a2-a1=2,
∵n?an+1=Sn+n(n+1)①,∴n≥2时,(n-1)?an=Sn-1+n(n-1)②,
①-②得:n?an+1-(n-1)?an=an+2n,
化简得:an+1-an=2(n≥2),
∵a2-a1=2,∴an+1-an=2(n∈N+),
即数列{an}是以0为首项,2为公差的等差数列,
∴an=0+2(n-1)=2(n-1);
(2)由an+log3n=log3bn得:bn=n?32n-2(n∈N*)
Tn=b1+b2+b3++bn=30+2?32+3?34+…+n?32n-2,①
∴9Tn=30+2?32+3?34+…+n?32n,②
②-①得:8Tn=n?32n-(30+32+34+…+32n-2)=n?32n-
∴Tn=
;
(3)∵an=2(n-1),
∴Pn=a1+a4+a7+…+a3n-2=
=n(3n-3),Qn=a10+a12+a14+…+a2n+8=
=n(2n+16)
∴Pn-Qn=n(3n-3)-n(2n+16)=n2-19n
若n2-19n>0,即n>19时,Pn>Qn;若n2-19n=0,即n=19时,Pn=Qn;若n2-19n<0,即1≤n<19时,Pn<Qn.
∵n?an+1=Sn+n(n+1)①,∴n≥2时,(n-1)?an=Sn-1+n(n-1)②,
①-②得:n?an+1-(n-1)?an=an+2n,
化简得:an+1-an=2(n≥2),
∵a2-a1=2,∴an+1-an=2(n∈N+),
即数列{an}是以0为首项,2为公差的等差数列,
∴an=0+2(n-1)=2(n-1);
(2)由an+log3n=log3bn得:bn=n?32n-2(n∈N*)
Tn=b1+b2+b3++bn=30+2?32+3?34+…+n?32n-2,①
∴9Tn=30+2?32+3?34+…+n?32n,②
②-①得:8Tn=n?32n-(30+32+34+…+32n-2)=n?32n-
32n?1 |
8 |
∴Tn=
(8n?1)32n?1 |
64 |
(3)∵an=2(n-1),
∴Pn=a1+a4+a7+…+a3n-2=
n(6n?6) |
2 |
n(18+4n+14) |
2 |
∴Pn-Qn=n(3n-3)-n(2n+16)=n2-19n
若n2-19n>0,即n>19时,Pn>Qn;若n2-19n=0,即n=19时,Pn=Qn;若n2-19n<0,即1≤n<19时,Pn<Qn.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询