在平面直角坐标系XOY中,直线l1过点A(1,0)且与y轴平行,直线l2过点B(0,2)且与x轴平行,直线l1与直

在平面直角坐标系XOY中,直线l1过点A(1,0)且与y轴平行,直线l2过点B(0,2)且与x轴平行,直线l1与直线l2相交于点P.点E为直线l2上一点,反比例函数y=k... 在平面直角坐标系XOY中,直线l1过点A(1,0)且与y轴平行,直线l2过点B(0,2)且与x轴平行,直线l1与直线l2相交于点P.点E为直线l2上一点,反比例函数y=kx(k>0)的图象过点E与直线l1相交于点F.(1)若点E与点P重合,求k的值;(2)连接OE、OF、EF.若k>2,且△OEF的面积为△PEF的面积的2倍,求E点的坐标;(3)是否存在点E及y轴上的点M,使得以点M、E、F为顶点的三角形与△PEF全等?若存在,求E点坐标;若不存在,请说明理由. 展开
 我来答
公布上墙
2014-12-12 · TA获得超过108个赞
知道答主
回答量:109
采纳率:0%
帮助的人:111万
展开全部
(1)若点E与点P重合,则k=1×2=2;

(2)当k>2时,如图1,
点E、F分别在P点的右侧和上方,过E作x轴的垂线EC,垂足为C,过F作y轴的垂线FD,垂足为D,EC和FD相交于点G,则四边形OCGD为矩形,
∵PF⊥PE,
∴S△FPE=
1
2
PE?PF=
1
2
k
2
-1)(k-2)=
1
4
k2-k+1,
∴四边形PFGE是矩形,
∴S△PFE=S△GEF
∴S△OEF=S矩形OCGD-S△DOF-S△EGF-S△OCE=
k
2
?k-
k
2
-(
1
4
k2-k+1)-
k
2
=
1
4
k2-1
∵S△OEF=2S△PEF
1
4
k2-1=2(
1
4
k2-k+1),
解得k=6或k=2,
∵k=2时,E、F重合,
∴k=6,
∴E点坐标为:(3,2);

(3)存在点E及y轴上的点M,使得△MEF≌△PEF,
①当k<2时,如图2,只可能是△MEF≌△PEF,作FH⊥y轴于H,
∵△FHM∽△MBE,
BM
FH
=
EM
FM

∵FH=1,EM=PE=1-
k
2
,FM=PF=2-k,
BM
1
=
1?
k
2
2?k
,BM=
1
2

在Rt△MBE中,由勾股定理得,EM2=EB2+MB2
∴(1-
k
2
2=(
k
2
2+(
1
2
2
解得k=
3
4
,此时E点坐标为(
3
8
,2),

②当k>2时,如图3,
只可能是△MFE≌△PEF,作FQ⊥y轴于Q,△FQM∽△MBE得,
BM
FQ
=
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
  • 个人、企业类侵权投诉
  • 违法有害信息,请在下方选择后提交

类别

  • 色情低俗
  • 涉嫌违法犯罪
  • 时政信息不实
  • 垃圾广告
  • 低质灌水

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消
EM