已知函数y=f(x)是定义在R上的奇函数,且当x∈(-∞,0)时不等式f(x)+xf′(x)<0成立,若a=3 0.3 f(3 0

已知函数y=f(x)是定义在R上的奇函数,且当x∈(-∞,0)时不等式f(x)+xf′(x)<0成立,若a=30.3f(30.3),b=(logπ3)f(logπ3),c... 已知函数y=f(x)是定义在R上的奇函数,且当x∈(-∞,0)时不等式f(x)+xf′(x)<0成立,若a=3 0.3 f(3 0.3 ),b=(log π 3)f(log π 3),c=f,则a,b,c的大小关系是(  ) A.a>b>c B.c>b>a C.c>a>b D.a>c>b 展开
 我来答
沢田仮齮卍28
2014-11-16 · TA获得超过138个赞
知道答主
回答量:109
采纳率:100%
帮助的人:50.5万
展开全部
C


分析:由已知式子(x)+xf′(x),可以联想到:(uv)′=u′v+uv′,从而可设h(x)=xf(x),
有:h′(x)=f(x)+xf′(x)<0,所以利用h(x)的单调性问题很容易解决.
解:构造函数h(x)=xf(x),
由函数y=f(x)以及函数y=x是R上的奇函数可得h(x)=xf(x)是R上的偶函数,
又当x∈(-∞,0)时h′(x)=f(x)+xf′(x)<0,
所以函数h(x)在x∈(-∞,0)时的单调性为单调递减函数;
所以h(x)在x∈(0,+∞)时的单调性为单调递增函数.
又因为函数y=f(x)是定义在R上的奇函数,所以f(0)=0,从而h(0)=0
因为log 3 =-2,所以f(log 3 )=f(-2)=-f(2),
由0<log π 3<1<3 0.3 <3 0.5 <2
所以h(log π 3)<h(3 0.3 )<h(2)=f(log 3 ),即:b<a<c
故选B.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式