数列{an}满足a1=1,a2=3,且an+2=(1+2|cosnπ2|)an+|sinnπ2|,(n∈N+)(1)证明:数列{a2k}(k∈N+
数列{an}满足a1=1,a2=3,且an+2=(1+2|cosnπ2|)an+|sinnπ2|,(n∈N+)(1)证明:数列{a2k}(k∈N+)为等比数列;(2)求数...
数列{an}满足a1=1,a2=3,且an+2=(1+2|cosnπ2|)an+|sinnπ2|,(n∈N+)(1)证明:数列{a2k}(k∈N+)为等比数列;(2)求数列{an}的通项公式;(3)求数列{an}的前n项和.
展开
1个回答
展开全部
(1)证明:设n=2k,k∈N*,
∵an+2=(1+2|cos
|)an+|sin
|,(n∈N+),
又a2=3,
∴
=3.
∴当k∈N*时,数列{a2k}为等比数列.
∴a2k=a2?3k-1=3k.
(2)解:设n=2k-1,k∈N*.
由a2k+1=(1+2|cos
|)a2k-1+|sin
|=a2k-1+1,
∴a2k+1-a2k-1=1.
∴当k∈N*时,数列{a2k-1}为等差数列.
∴a2k-1=a1+(k-1)?1=k.
∴an =
.
(3)解:设数列{an}的前n项和为Tn .
由(2)知:
当n为奇数时,Tn=a1 +a2+a3+…+an?1+an
=1+3+2+32+3+33+4+34+…+3
+
=(1+2+3+4+…+
)+(3+32+33+34+…+3
)
=
+
∵an+2=(1+2|cos
nπ |
2 |
nπ |
2 |
又a2=3,
∴
a2k+2 |
a2k |
∴当k∈N*时,数列{a2k}为等比数列.
∴a2k=a2?3k-1=3k.
(2)解:设n=2k-1,k∈N*.
由a2k+1=(1+2|cos
(2k?1)π |
2 |
(2k?1)π |
2 |
∴a2k+1-a2k-1=1.
∴当k∈N*时,数列{a2k-1}为等差数列.
∴a2k-1=a1+(k-1)?1=k.
∴an =
|
(3)解:设数列{an}的前n项和为Tn .
由(2)知:
当n为奇数时,Tn=a1 +a2+a3+…+an?1+an
=1+3+2+32+3+33+4+34+…+3
n?1 |
2 |
n+1 |
2 |
=(1+2+3+4+…+
n+1 |
2 |
n?1 |
2 |
=
| ||||
2 |
3(1?3 |