罗尔定理关于根的推论中f(x)的n阶导数不等于零至多有n个根是不是前提是小于n阶导数的至少要有一点

罗尔定理关于根的推论中f(x)的n阶导数不等于零至多有n个根是不是前提是小于n阶导数的至少要有一点为零?... 罗尔定理关于根的推论中f(x)的n阶导数不等于零至多有n个根是不是前提是小于n阶导数的至少要有一点为零? 展开
 我来答
无情天魔精致
2016-05-08 · TA获得超过1万个赞
知道大有可为答主
回答量:3711
采纳率:76%
帮助的人:1063万
展开全部
  你这一句话说的太长了,加上标点符号可好?
  另外,f(x)的n阶导数不等于零,是说f(x)的n阶导数不恒等于零,还是说f(x)的n阶导数没有零点???
追问
没有零点
追答

  罗尔定理:f(x)在[a,b]连续,在(a,b)可导,如果f(a)=f(b),则f'(x)至少有一个根.

  特别的,如果上述f(a)=f(b)=0,也就是f(x)在[a,b]有两个根,那么f'(x)在(a,b)至少有一个根.反之,如果f'(x)在(a,b)没有根,f(x)在[a,b]就不会有多于1个的根.

  简单说,导函数没有根,原函数至多有一个根.

  推而广之,如果f(x)在[a,b]连续,在(a,b)内n阶可导.并且f(x)在[a,b]有n+1个根:x0,x1,x2,...xn,那么根据罗尔定理,f'(x)在(x0,x1),(x1,x2),...,(xn-1,xn)内分别至少有一个根,从而在(a,b)内至少有n个根,同理f''(x)在(a,b)内至少有n-1个根,...,fk(x)(k阶导数)在(a,b)内至少有n-k+1个根,n阶导数fn(x)在(a,b)内至少有1个根.

  因此,反过来,如果n阶导数没有根,f(x)就至多有n个根.

  

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式