计算三重积分I=∫∫∫(D)(x^2+y^2)dxdydz,其中D是由曲面z=(x^2+y^2)^(1/2)与z=2-x^2-y^2所围成的闭区域
1个回答
展开全部
选用柱坐标系:0≤ θ≤ 2Pi ,0≤ r ≤ 2,r^2 /2 ≤ z ≤ 2
原式 = ∫ dθ ∫ dr ∫ r^3 dz = ∫ dθ ∫ r^3 ( 2- r^2 /2 ) dr
= 2 Pi * (r^4 /2 - r^6/12) | r=2
= 16 Pi /3
原式 = ∫ dθ ∫ dr ∫ r^3 dz = ∫ dθ ∫ r^3 ( 2- r^2 /2 ) dr
= 2 Pi * (r^4 /2 - r^6/12) | r=2
= 16 Pi /3
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询