展开全部
解:∵P菱形ABCD的对角线AC上,
∴PB=PD,AP+PB+PD=AP+2PB,
AB/sin∠APB=PB/sin15°=AP/sin(∠CPB-15°),
∴AP+PB+PD=AB(sin(∠CPB-15°)+2sin15°)/sin∠CPB
=AB(sin∠CPBcos15°-cos∠CPBsin15°+2sin15°)/sin∠CPB
=AB(cos15°-sin15°cos∠CPB/sin∠CPB+2sin15°/sin∠CPB),
=AB(cos15°+sin15°(2/sin∠CPB-cos∠CPB/sin∠CPB)),
令t=cos∠CPB/sin∠CPB,则2/sin∠CPB-cos∠CPB/sin∠CPB=2√(1+t²)-t,
设2√(1+t²)-t≥θ,θ为常数,即3t²-2θt-θ²+4≥0,△=4θ²+12θ²-48≥0, θ²≤3,
∵ 15°<∠CPB<90°,∴t≥0,θ=√3,t≥√3/3,
AP+PB+PD≥AB(cos15°+sin15°√ 3)=2ABsin(15°+30°)=6√2。
∴PB=PD,AP+PB+PD=AP+2PB,
AB/sin∠APB=PB/sin15°=AP/sin(∠CPB-15°),
∴AP+PB+PD=AB(sin(∠CPB-15°)+2sin15°)/sin∠CPB
=AB(sin∠CPBcos15°-cos∠CPBsin15°+2sin15°)/sin∠CPB
=AB(cos15°-sin15°cos∠CPB/sin∠CPB+2sin15°/sin∠CPB),
=AB(cos15°+sin15°(2/sin∠CPB-cos∠CPB/sin∠CPB)),
令t=cos∠CPB/sin∠CPB,则2/sin∠CPB-cos∠CPB/sin∠CPB=2√(1+t²)-t,
设2√(1+t²)-t≥θ,θ为常数,即3t²-2θt-θ²+4≥0,△=4θ²+12θ²-48≥0, θ²≤3,
∵ 15°<∠CPB<90°,∴t≥0,θ=√3,t≥√3/3,
AP+PB+PD≥AB(cos15°+sin15°√ 3)=2ABsin(15°+30°)=6√2。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询