求教:已知微分方程特解,求非齐次方程的通解

 我来答
bill8341
高粉答主

2017-01-17 · 关注我不会让你失望
知道大有可为答主
回答量:1.8万
采纳率:95%
帮助的人:3595万
展开全部
两个非齐次微分方程的特解做差就可以的到对应的齐次微分方程的特解
设这个微分方程是f(y(x))=P(x)
则f(y1(x))=p(x);f(y2(x))=p(x)两式相减
f(y1(x))-f(y2(x))=f(y1(x)-y2(x))=p(x)-p(x)=0
即y1(x)-y2(x)是对应齐次微分方程f(y(x))=0的一个解。
第四行第一个等号成立是因为这个微分方程是线性的,满足叠加原理
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式