在正方形abcd中,点ef分别是bcdc的中点

如图1,在正方形ABCD中,点E、F分别是BC、CD的中点,AF、DE相交于点G,则可得结论:①AF=DE;②AF⊥DE.(不需要证明).(1)如图2,若点E、F不是正方... 如图1,在正方形ABCD中,点E、F分别是BC、CD的中点,AF、DE相交于点G,则可得结论:①AF=DE;②AF⊥DE.(不需要证明). (1)如图2,若点E、F不是正方形ABCD的边的中点,但满足CE=DF,则上面的结论①、②是否仍然成立?(请直接回答“成立”或“不成立”) (2)如图3,若点E、F分别在正方形ABCD的边CB的延长线上,且CE=DF,此时上面的结论①、②是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由. 见图一 展开
 我来答
蔚然律棠
2020-06-14 · TA获得超过1014个赞
知道小有建树答主
回答量:1480
采纳率:95%
帮助的人:6.7万
展开全部
(1)答:结论①②成立,理由如下:
∵DF=CE,AD=DC,且∠ADF=∠DCE,
∴△DEC≌△AFD;
∴结论①、②成立(1分)

(2)结论①、②仍然成立.
理由:∵四边形ABCD为正方形,
∴AD=DC=CB且∠ADC=∠DCB=90°,
在Rt△ADF和Rt△DCE中,
AD=DC,∠ADC=∠DCB,CE=DF,
∴Rt△ADF≌Rt△DCE(SAS),(3分)
∴AF=DE,
∴∠DAF=∠CDE,
∵∠ADE+∠CDE=90°,
∴∠ADE+∠DAF=90°,
∴∠AGD=90°,
∴AF⊥DE.(5分)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式