设实数a不等于0,且函数f(x)=a(x^2+1)-(2x+1/a)有最小值-1

1)求a的值2)设数列{an}的前n项和Sn=f(n),令bn=a2+a4+...+a2n,证明{bn}是等差数列要详细过程,谢谢... 1)求a的值
2)设数列{an}的前n项和Sn=f(n),令bn=a2+a4+...+a2n,证明{bn}是等差数列
要详细过程,谢谢
展开
左右鱼耳
2010-09-03 · TA获得超过3.3万个赞
知道大有可为答主
回答量:2595
采纳率:0%
帮助的人:4910万
展开全部
解:
1)f(x)=ax^2 -2x +a-1/a
因为存在最小值 ,所以f(x)开口必须是向上的
所以 a>0
原函数的对称轴是
x = 1/a
代入得f(x)得:
1/a -2/a + a -1/a = -1
a - 2/a=-1
a^2+a-2=0
(a+2)(a-1)=0
因为a>0
所以a = 1

2)Sn=f(n)=(n^2+1)-(2n+1)=n^2-2n
an=S(n)-S(n-1)=n^2-2n-(n-1)^2+2(n-1)=2n-3
bn=[a2+a4+...+a(2n)]/n
=[(4-3)+(8-3)+……+(4n-3)]/n
=[(1/2)(4+4n)n-3n]/n
=2n-1
b1=1, bn-b(n-1)=2n-1-2(n-1)+1=2=d(公差)
所以{bn}是以1为首项,2为公差的等差数列.
dlw19620101
2010-09-03 · TA获得超过2.5万个赞
知道大有可为答主
回答量:1.1万
采纳率:78%
帮助的人:3210万
展开全部
(1)
f(x)
=a(x²+1)-(2x+1/a)
=a(x-1/a)²+(a-2/a)
a-2/a=-1
a>0
a=1

(2)
Sn=n²-2n
an=(n²-2n)-[(n-1)²-2(n-1)]=2n-3
bn=2(2+4+...+2n)-3n=2n(n+1)-3n=2n²-n
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式