如图,在斜三棱柱ABC-A1B1C1中,四边形ABB1A1是菱形,四边形CBB1C1是矩形,AB⊥BC,CB=3,AB=4,∠A1AB=6
如图,在斜三棱柱ABC-A1B1C1中,四边形ABB1A1是菱形,四边形CBB1C1是矩形,AB⊥BC,CB=3,AB=4,∠A1AB=60°,D、E分别是AC、A1B的...
如图,在斜三棱柱ABC-A1B1C1中,四边形ABB1A1是菱形,四边形CBB1C1是矩形,AB⊥BC,CB=3,AB=4,∠A1AB=60°,D、E分别是AC、A1B的中点.(Ⅰ)求证:平面CA1B⊥平面ABB1A1;(Ⅱ)求证:DE∥平面CBB1C1;(Ⅲ)求四面体A1ABC的体积.
展开
展开全部
(Ⅰ证明:∵四边形BCC1B1是矩形,AB⊥BC
∴AB⊥BC,BC⊥BB1,AB∩BB1=B
∴CB⊥平面ABB1A1,
∵CB?平面CA1B
∴平面CA1B⊥平面ABB1A1;
(Ⅱ)证明:取AB的中点O,连接OD,OE,则
∵D、E分别是AC、A1B的中点,
∴OD∥BC,OE∥AA1∥BB1,
∵OD∩OE=O,BC∩BB1=B,
∴平面DEO∥平面CBB1C1,
∵DE?平面DEO,
∴DE∥平面CBB1C1;
(Ⅲ)连接A1O,则
∵四边形ABB1A1是菱形,∠A1AB=60°,
∴A1O⊥AB,
∵BC⊥平面ABB1A1,
∴BC⊥A1O,
∵AB∩BC=B,
∴A1O⊥平面ABC,
∴VA1ABC=
×(
×3×4)×2
=4
.
∴AB⊥BC,BC⊥BB1,AB∩BB1=B
∴CB⊥平面ABB1A1,
∵CB?平面CA1B
∴平面CA1B⊥平面ABB1A1;
(Ⅱ)证明:取AB的中点O,连接OD,OE,则
∵D、E分别是AC、A1B的中点,
∴OD∥BC,OE∥AA1∥BB1,
∵OD∩OE=O,BC∩BB1=B,
∴平面DEO∥平面CBB1C1,
∵DE?平面DEO,
∴DE∥平面CBB1C1;
(Ⅲ)连接A1O,则
∵四边形ABB1A1是菱形,∠A1AB=60°,
∴A1O⊥AB,
∵BC⊥平面ABB1A1,
∴BC⊥A1O,
∵AB∩BC=B,
∴A1O⊥平面ABC,
∴VA1ABC=
1 |
3 |
1 |
2 |
3 |
3 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询