已知公差不为0的等差数列{an}的前n项和为Sn,S9=a37+24,且a1,a4,a13成等比数列.(1)求数列{an}的通
已知公差不为0的等差数列{an}的前n项和为Sn,S9=a37+24,且a1,a4,a13成等比数列.(1)求数列{an}的通项公式;(2)求数列{1Sn}的前n项和....
已知公差不为0的等差数列{an}的前n项和为Sn,S9=a37+24,且a1,a4,a13成等比数列.(1)求数列{an}的通项公式;(2)求数列{1Sn}的前n项和.
展开
1个回答
展开全部
(1)∵S9=a37+24,且a1,a4,a13成等比数列.
∴
解得a1=3,d=2
∴an=a1+(n-1)d=2n+1
(2)由(1)知,Sn=
=
=n(n+2)
=
=
(
?
),
∴数列{
}的前n项和为
[(1?
)+(
?
)+(
?
)+…+(
?
)]
=
(1+
?
?
)
=
?
?
.
∴
|
∴an=a1+(n-1)d=2n+1
(2)由(1)知,Sn=
(a1+an)n |
2 |
(3+2n+1)n |
2 |
1 |
Sn |
1 |
n(n+2) |
1 |
2 |
1 |
n |
1 |
n+2 |
∴数列{
1 |
Sn |
1 |
2 |
1 |
3 |
1 |
2 |
1 |
4 |
1 |
3 |
1 |
5 |
1 |
n |
1 |
n+2 |
=
1 |
2 |
1 |
2 |
1 |
n+1 |
1 |
n+2 |
=
3 |
4 |
1 |
2n+2 |
1 |
2n+4 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询