两块等腰直角三角板△ABC和△DEC如图摆放,其中∠ACB=∠DCE=90°,F是DE的中点,H是AE的中点,G是BD的中
两块等腰直角三角板△ABC和△DEC如图摆放,其中∠ACB=∠DCE=90°,F是DE的中点,H是AE的中点,G是BD的中点.(1)如图1,若点D、E分别在AC、BC的延...
两块等腰直角三角板△ABC和△DEC如图摆放,其中∠ACB=∠DCE=90°,F是DE的中点,H是AE的中点,G是BD的中点.(1)如图1,若点D、E分别在AC、BC的延长线上,通过观察和测量,猜想FH和FG的数量关系为______和位置关系为______;(2)如图2,若将三角板△DEC绕着点C顺时针旋转至ACE在一条直线上时,其余条件均不变,则(1)中的猜想是否还成立,若成立,请证明,不成立请说明理由;(3)如图3,将图1中的△DEC绕点C顺时针旋转一个锐角,得到图3,(1)中的猜想还成立吗?直接写出结论,不用证明.
展开
1个回答
展开全部
(1)解:∵CE=CD,AC=BC,∠ECA=∠DCB=90°,
∴BE=AD,
∵F是DE的中点,H是AE的中点,G是BD的中点,
∴FH=
AD,FH∥AD,FG=
BE,FG∥BE,
∴FH=FG,
∵AD⊥BE,
∴FH⊥FG,
故答案为:相等,垂直.
(2)答:成立,
证明:∵CE=CD,∠ECD=∠ACD=90°,AC=BC,
∴△ACD≌△BCE
∴AD=BE,
由(1)知:FH=
AD,FH∥AD,FG=
BE,FG∥BE,
∴FH=FG,FH⊥FG,
∴(1)中的猜想还成立.
(3)答:成立,结论是FH=FG,FH⊥FG.
连接AD,BE,两线交于Z,AD交BC于X,
同(1)可证
∴FH=
AD,FH∥AD,FG=
BE,FG∥BE,
∵三角形ECD、ACB是等腰直角三角形,
∴CE=CD,AC=BC,∠ECD=∠ACB=90°,
∴∠ACD=∠BCE,
在△ACD和△BCE中
,
∴△ACD≌△BCE,
∴AD=BE,∠EBC=∠DAC,
∵∠DAC+∠CXA=90°,∠CXA=∠DXB,
∴∠DXB+∠EBC=90°,
∴∠EZA=180°-90°=90°,
即AD⊥BE,
∵FH∥AD,FG∥BE,
∴FH⊥FG,
即FH=FG,FH⊥FG,
结论是FH=FG,FH⊥FG
∴BE=AD,
∵F是DE的中点,H是AE的中点,G是BD的中点,
∴FH=
1 |
2 |
1 |
2 |
∴FH=FG,
∵AD⊥BE,
∴FH⊥FG,
故答案为:相等,垂直.
(2)答:成立,
证明:∵CE=CD,∠ECD=∠ACD=90°,AC=BC,
∴△ACD≌△BCE
∴AD=BE,
由(1)知:FH=
1 |
2 |
1 |
2 |
∴FH=FG,FH⊥FG,
∴(1)中的猜想还成立.
(3)答:成立,结论是FH=FG,FH⊥FG.
连接AD,BE,两线交于Z,AD交BC于X,
同(1)可证
∴FH=
1 |
2 |
1 |
2 |
∵三角形ECD、ACB是等腰直角三角形,
∴CE=CD,AC=BC,∠ECD=∠ACB=90°,
∴∠ACD=∠BCE,
在△ACD和△BCE中
|
∴△ACD≌△BCE,
∴AD=BE,∠EBC=∠DAC,
∵∠DAC+∠CXA=90°,∠CXA=∠DXB,
∴∠DXB+∠EBC=90°,
∴∠EZA=180°-90°=90°,
即AD⊥BE,
∵FH∥AD,FG∥BE,
∴FH⊥FG,
即FH=FG,FH⊥FG,
结论是FH=FG,FH⊥FG
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询