已知定义在R上的函数f(x)=x2(ax-3)+2,其中a为常数.(1)若x=1是函数y=f(x)的一个极值点,求a的值

已知定义在R上的函数f(x)=x2(ax-3)+2,其中a为常数.(1)若x=1是函数y=f(x)的一个极值点,求a的值;(2)若函数y=f(x)在区间(-1,0)上是增... 已知定义在R上的函数f(x)=x2(ax-3)+2,其中a为常数.(1)若x=1是函数y=f(x)的一个极值点,求a的值;(2)若函数y=f(x)在区间(-1,0)上是增函数,求实数a的取值范围;(3)当a>0时,若g(x)=f(x)+f′(x),(其中x∈[0,2]),在x=0处取得最大值,求实数a的取值范围. 展开
 我来答
无奈22d
推荐于2016-08-21 · TA获得超过103个赞
知道答主
回答量:137
采纳率:66%
帮助的人:138万
展开全部
(1)∵f(x)=ax3-3x2+2,
∴f'(x)=3ax2-6x=3x(ax-2).
∵x=1是f(x)的一个极值点,
∴f'(1)=0,解得a=2
(2)①当a=0时,
f(x)=-3x2在区间(-1,0)上是增函数
∴a=0符合题意;
②当a≠0时,f'(x)=3ax(x-
2
a
),令f'(x)=0得:x1=0,x2=
2
a

当a>0时,对任意x∈(-1,0),f'(x)>0,
∴a>0 (符合题意)
当a<0时,当x∈(
2
a
,2)时,f'(x)>0,∴
2
a
≤-1,∴-2≤a<0(符合题意),
综上所述,a≥-2.
(3)a>0,g(x)=ax3+(3a-3)x2-6x+2,x∈[0,2].
g'(x)=3ax2+2(3a-3)x-6=3[ax2+2(a-1)x-2],
令g'(x)=0,即ax2+2(a-1)x-2=0(*),显然有△=4a2+4>0.
设方程(*)的两个根为x1,x2,由(*)式得 x1x2=-
2
a
<0,不妨设x1<0<x2
当0<x2<2时,g(x2)为极小值
所以g(x)在[0,2]上的最大值只能为g(0)或g(2)
当x2≥2时,由于g(x)在[0,2]上是单调递减函数
所以最大值为g(0),所以在[0,2]上的最大值只能为g(0)或g(2)
又已知g(x)在x=0处取得最大值
所以g(0)≥g(2)即0≥20a-22,解得a≤
6
5
,又因为a>0,所以a∈(0,
6
5
]
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式