如图,正三棱柱ABC-A1B1C1的所有棱长都为2,D为CC1中点.(Ⅰ)求证:AB1⊥面A1BD;(Ⅱ)求二面角A-A1D-
如图,正三棱柱ABC-A1B1C1的所有棱长都为2,D为CC1中点.(Ⅰ)求证:AB1⊥面A1BD;(Ⅱ)求二面角A-A1D-B的余弦....
如图,正三棱柱ABC-A1B1C1的所有棱长都为2,D为CC1中点.(Ⅰ)求证:AB1⊥面A1BD;(Ⅱ)求二面角A-A1D-B的余弦.
展开
1个回答
展开全部
解答:(Ⅰ)证明:取BC中点O,连结AO,
∵△ABC为正三角形,
∴AO⊥BC,
∵正三棱柱ABC-A1B1C1中,平面ABC⊥平面BCC1B1,
∴AO⊥平面BCC1B1,
连结B1O,在正方形BB1C1C中,O、D分别为BC、CC1的中点,
∴B1O⊥BD,
∴AB1⊥BD,
在正方形ABB1A1中,AB1⊥A1B,
∴AB1⊥平面A1BD.
(Ⅱ)解:设AB1与A1B交于点C,
在平面A1BD中,作GF⊥A1D于F,连结AF,
由(Ⅰ)得AB1⊥平面A1BD,
∴∠AFG为二面角A-A1B-B的平面角,
在△AA1D中,由等面积法可求得AF=
,
又∵AG=
AB1=
,
∴sin∠AFG=
=
=
,∴cos∠AFG=
.
∴二面角A-A1D-B的余弦值为
.
∵△ABC为正三角形,
∴AO⊥BC,
∵正三棱柱ABC-A1B1C1中,平面ABC⊥平面BCC1B1,
∴AO⊥平面BCC1B1,
连结B1O,在正方形BB1C1C中,O、D分别为BC、CC1的中点,
∴B1O⊥BD,
∴AB1⊥BD,
在正方形ABB1A1中,AB1⊥A1B,
∴AB1⊥平面A1BD.
(Ⅱ)解:设AB1与A1B交于点C,
在平面A1BD中,作GF⊥A1D于F,连结AF,
由(Ⅰ)得AB1⊥平面A1BD,
∴∠AFG为二面角A-A1B-B的平面角,
在△AA1D中,由等面积法可求得AF=
4
| ||
5 |
又∵AG=
1 |
2 |
2 |
∴sin∠AFG=
AG |
AF |
| ||||
|
| ||
4 |
| ||
4 |
∴二面角A-A1D-B的余弦值为
| ||
4 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询