常微分方程求具体步骤思路

 我来答
百度网友8362f66
2016-02-29 · TA获得超过8.3万个赞
知道大有可为答主
回答量:8690
采纳率:83%
帮助的人:3279万
展开全部
  解:由dy/dx=y,有dy/y=dx,∴lny=x+c。又y(0)=1,∴C=0,即y=f(x)=e^x。
  对二阶非齐次线性方程y''-3y'+2y=f(x)=e^x,其特征方程为r^2-3r+2=0,r=1,2。∴Yc=c1e^x+c2e^(2x)。
  ∵r=1是单特征根,设待定特解为x(ax+b)e^x,代入原方程,解得a=0,b=-1,∴通解为y=(c1-x)e^x+c2e^(2x)。供参考。
更多追问追答
追问

我化简到最后得出这个。。。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式