原函数的导数和反函数的导数为什么是倒数关系

 我来答
帐号已注销
推荐于2019-10-09 · TA获得超过33.9万个赞
知道小有建树答主
回答量:403
采纳率:0%
帮助的人:15.6万
展开全部

首先必须明白是什么样的反函数

我们一般设一个原来的函数y=f(x)。

那么反函数就设为y=f^-1(x),这两个图像关于y=x这条直线对称。

但是这样的原来函数和反函数之间的导数,谈不上什么关系。

必须是写成x=f^-1(y)形式的反函数,其导数才是和原来函数的导数成倒数关系。

我们知道,在同一个x-y坐标系内,原函数y=f(x)和反函数x=f^-1(y)是同一个图像,那么对于函数上同一个点(x0,y0)点处的切线,当然就是同一条切线。

在原函数y=f(x)中,我们求的导数,从几何意义上说,就是x轴正半轴转到切线的角度的正切

而反函数x=f^-1(y)中,我们求的导数,从几何意义上说,就是y轴正半轴转到切线的角度的正切。

而这两个函数在同一个x-y坐标系内是同一条曲线,在同一个点(x0,y0)处是同一条切线。这同一条切线的“x轴正半轴转到切线的角度”和“y轴正半轴转到切线的角度”相加,当然就是90°,那么这两个角的正切当然就互为倒数。

所以才会有“原函数的导数和反函数的导数成倒数关系”的性质。

扩展资料:

一般来说,设函数y=f(x)(x∈A)的值域是C,若找得到一个函数g(y)在每一处g(y)都等于x,这样的函数x= g(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记作y=f^(-1)(x) 。反函数y=f ^(-1)(x)的定义域、值域分别是函数y=f(x)的值域、定义域。最具有代表性的反函数就是对数函数与指数函数。

一般地,如果x与y关于某种对应关系f(x)相对应,y=f(x),则y=f(x)的反函数为x=f (y)或者y=f﹣¹(x)。存在反函数(默认为单值函数)的条件是原函数必须是一一对应的(不一定是整个数域内的)。注意:上标"−1"指的并不是幂。

在证明这个定理之前先介绍函数的严格单调性

设y=f(x)的定义域为D,值域为f(D)。如果对D中任意两点x1和x2,当x1<x2时,有y1<y2,则称y=f(x)在D上严格单调递增;当x1<x2时,有y1>y2,则称y=f(x)在D上严格单调递减。

证明:设f在D上严格单增,对任一y∈f(D),有x∈D使f(x)=y。

而由于f的严格单增性,对D中任一x'<x,都有y'<y;任一x''>x,都有y''>y。总之能使f(x)=y的x只有一个,根据反函数的定义,f存在反函数f-1。

任取f(D)中的两点y1和y2,设y1<y2。而因为f存在反函数f-1,所以有x1=f-1(y1),x2=f-1(y2),且x1、x2∈D。

若此时x1≥x2,根据f的严格单增性,有y1≥y2,这和我们假设的y1<y2矛盾。

因此x1<x2,即当y1<y2时,有f-1(y1)<f-1(y2)。这就证明了反函数f-1也是严格单增的。

如果f在D上严格单减,证明类似。

由基本函数的和、差、积、商或相互复合构成的函数的导函数则可以通过函数的求导法则来推导。基本的求导法则如下:

1、求导的线性:对函数的线性组合求导,等于先对其中每个部分求导后再取线性组合(即①式)。

2、两个函数的乘积的导函数:一导乘二+一乘二导(即②式)。

3、两个函数的商的导函数也是一个分式:(子导乘母-子乘母导)除以母平方(即③式)。

4、如果有复合函数,则用链式法则求导。

参考资料:百度百科——反函数

参考资料:百度百科——导数

yshcpu
2015-01-06 · TA获得超过563个赞
知道小有建树答主
回答量:618
采纳率:0%
帮助的人:453万
展开全部

你的理解有误,定理不是这样描述的。原函数的导数和反函数的导数并不是倒数关系。

反函数的倒数定理指出,一个函数反函数的导数和该反函数直接函数的导数是倒数关系。

你要先明白什么事反函数的直接函数。

所以在求导过程中,要把原函数和直接函数找正确。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
推荐于2017-11-23
展开全部
原函数的导数和反函数的导数成倒数关系
首先,在这里反函数必须明白是什么样的反函数。
我们一般设一个原来的函数y=f(x)
那么反函数就设为y=f^-1(x),这两个图像关于y=x这条直线对称。
但是这样的原来函数和反函数之间的导数,谈不上什么关系。
那么要是什么样的反函数呢?
必须是写成x=f^-1(y)形式的反函数,其导数才是和原来函数的导数成倒数关系。
我们知道,在同一个x-y坐标系内,原函数y=f(x)和反函数x=f^-1(y)是同一个图像,那么对于函数上同一个点(x0,y0)点处的切线,当然就是同一条切线。
在原函数y=f(x)中,我们求的导数,从几何意义上说,就是x轴正半轴转到切线的角度的正切
而反函数x=f^-1(y)中,我们求的导数,从几何意义上说,就是y轴正半轴转到切线的角度的正切。
而这两个函数在同一个x-y坐标系内是同一条曲线,在同一个点(x0,y0)处是同一条切线。这同一条切线的“x轴正半轴转到切线的角度”和“y轴正半轴转到切线的角度”相加,当然就是90°,那么这两个角的正切当然就互为倒数。
所以才会有“原函数的导数和反函数的导数成倒数关系”的性质。
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
yxue
2015-01-06 · TA获得超过2.9万个赞
知道大有可为答主
回答量:1.2万
采纳率:94%
帮助的人:3117万
展开全部
y=y(x) 原函数 原函数的导数:dy/dx
x=x(y) 反函数 反函数的导数:dx/dy
可见: dx/dy = 1/(dy/dx)
即原函数的导数与反函数的导数互为倒数。
举例:原函数 y = tan x
反函数 x = arctan y
原函数的导数 dy/dx = sec²x
反函数的导数 dx/dy = 1/(1+y²)
dx/dy = 1/(1+tan²x) = 1/sec²x = 1/(dy/dx)
即:dx/dy 与 dy/dx 互为倒数。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
温景明泉溪
2019-06-03 · TA获得超过3.7万个赞
知道大有可为答主
回答量:1.2万
采纳率:30%
帮助的人:1057万
展开全部
原函数的导数和反函数的导数成倒数关系
首先,在这里反函数必须明白是什么样的反函数。
我们一般设一个原来的函数y=f(x)
那么反函数就设为y=f^-1(x),这两个图像关于y=x这条直线对称。
但是这样的原来函数和反函数之间的导数,谈不上什么关系。
那么要是什么样的反函数呢?
必须是写成x=f^-1(y)形式的反函数,其导数才是和原来函数的导数成倒数关系。
我们知道,在同一个x-y坐标系内,原函数y=f(x)和反函数x=f^-1(y)是同一个图像,那么对于函数上同一个点(x0,y0)点处的切线,当然就是同一条切线。
在原函数y=f(x)中,我们求的导数,从几何意义上说,就是x轴正半轴转到切线的角度的正切
而反函数x=f^-1(y)中,我们求的导数,从几何意义上说,就是y轴正半轴转到切线的角度的正切。
而这两个函数在同一个x-y坐标系内是同一条曲线,在同一个点(x0,y0)处是同一条切线。这同一条切线的“x轴正半轴转到切线的角度”和“y轴正半轴转到切线的角度”相加,当然就是90°,那么这两个角的正切当然就互为倒数。
所以才会有“原函数的导数和反函数的导数成倒数关系”的性质。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(3)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式