“根号下1+X的平方”的原函数是什么?
2个回答
展开全部
对√(1+x^2)求积分
作三角代换,令x=tant
则∫√(1+x²)dx
=secttant+ln│sect+tant│--∫(sect)^3dt
所以∫(sect)^3dx=1/2(secttant+ln│sect+tant│)+C
从而∫√(1+x^2) dx
=1/2(x√(1+x²)+ln(x+√(1+x²)))+C
如图所示
拓展资料:
原函数
原函数是指对于一个定义在某区间的已知函数f(x),如果存在可导函数F(x),使得在该区间内的任一点都存在dF(x)=f(x)dx,则在该区间内就称函数F(x)为函数f(x)的原函数。
资料参考:原函数百度百科
展开全部
令x=tan(t),t∈(-pi/2,pi/2),则根号(1+x^2)=sec(t),
∫根号(1+x^2)dx
=∫sec(t)d(tan(t))-----(令此积分为I)
=tan(t)sec(t)-∫tan(t)d(sec(t))
=tan(t)sec(t)-∫tan(t)^2.sec(t)dt
=tan(t)sec(t)-∫sec(t)[sec(t)^2-1]dt
=tan(t)sec(t)-∫sec(t)d(tan(t))+∫sec(t)dt
=tan(t)sec(t)-∫sec(t)d(tan(t))+ln[sec(t)+tan(t)]
=tan(t)sec(t)+ln[sec(t)+tan(t)]-I
所以2I=tan(t)sec(t)+ln[sec(t)+tan(t)]+C
I={tan(t)sec(t)+ln[sec(t)+tan(t)]}/2+C
={x根号(1+x^2)+ln[根号(1+x^2)+x]}/2+C
不定积分I即为所求原函数.
∫根号(1+x^2)dx
=∫sec(t)d(tan(t))-----(令此积分为I)
=tan(t)sec(t)-∫tan(t)d(sec(t))
=tan(t)sec(t)-∫tan(t)^2.sec(t)dt
=tan(t)sec(t)-∫sec(t)[sec(t)^2-1]dt
=tan(t)sec(t)-∫sec(t)d(tan(t))+∫sec(t)dt
=tan(t)sec(t)-∫sec(t)d(tan(t))+ln[sec(t)+tan(t)]
=tan(t)sec(t)+ln[sec(t)+tan(t)]-I
所以2I=tan(t)sec(t)+ln[sec(t)+tan(t)]+C
I={tan(t)sec(t)+ln[sec(t)+tan(t)]}/2+C
={x根号(1+x^2)+ln[根号(1+x^2)+x]}/2+C
不定积分I即为所求原函数.
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询