展开全部
设y=tx,则dy=xdt+tdx,方程变为
(1+2t-t^2)dx+(t^2+2t-1)(xdt+tdx)=0,
整理得(t^3+t^2+t+1)dx+x(t^2+2t-1)dt=0,
分离变量得dx/x=-(t^2+2t-1)dt/[(t+1)(t^2+1)]
=[2/(t+1)-(3t-1)/(t^2+1)]dt,
积分得lnx=2ln(t+1)-(3/2)ln(t^2+1)+arctant+lnc,
所以x=c(t+1)^2/(t^2+1)^(3/2)*e^arctant,
即x=c(y/x+1)^2/(y^2/x^2+1)^(3/2)*e^arctan(y/x),为所求。
(1+2t-t^2)dx+(t^2+2t-1)(xdt+tdx)=0,
整理得(t^3+t^2+t+1)dx+x(t^2+2t-1)dt=0,
分离变量得dx/x=-(t^2+2t-1)dt/[(t+1)(t^2+1)]
=[2/(t+1)-(3t-1)/(t^2+1)]dt,
积分得lnx=2ln(t+1)-(3/2)ln(t^2+1)+arctant+lnc,
所以x=c(t+1)^2/(t^2+1)^(3/2)*e^arctant,
即x=c(y/x+1)^2/(y^2/x^2+1)^(3/2)*e^arctan(y/x),为所求。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询