这道高中数学题有个疑问点不明白,求大佬教教我
看了解析第一问还是不明白,为什么是在R上递增而不是在0到正无穷上递增呢?还有它没有递减区间吗?...
看了解析第一问还是不明白,为什么是在R上递增而不是在0到正无穷上递增呢?还有它没有递减区间吗?
展开
3个回答
展开全部
定义域为R,a的不同取值范围决定函数有不同的单调性,所以才讨论。
由f'(x)=e^x-a,
当a≤0时,-a≥0,且e^x>0,则e^x-a>0恒成立,故f(x)在R上单调递增
当a>0,f'(x)=e^x-a=0有解,得x=lna,则(-∞,lna),f’(x)<0,单调递减,
(lna,+∞)时,f'(x)>0,单调递增
由f'(x)=e^x-a,
当a≤0时,-a≥0,且e^x>0,则e^x-a>0恒成立,故f(x)在R上单调递增
当a>0,f'(x)=e^x-a=0有解,得x=lna,则(-∞,lna),f’(x)<0,单调递减,
(lna,+∞)时,f'(x)>0,单调递增
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
这个题的解答没有写完整
f'(x)=e^x-a
(1)a≤0时,则-a≥0
对于任意的x∈R,我们有e^x>0
故对于任意的x∈R,我们有f'(x)=e^x-a>0
所以f(x)在R上单调递增(这里是R的原因1:f'(x)恒大于0;原因2:f(x)的定义域为R)
(2)a>0时,
令f'(x)≥0,则e^x-a≥0
也就是x≥ln a
所以f(x)在[ln a,+∞)上单调递增
再令f'(x)<0,则e^x-a<0
也就是x<ln a
所以f(x)在(-∞,ln a)上单调递减
f'(x)=e^x-a
(1)a≤0时,则-a≥0
对于任意的x∈R,我们有e^x>0
故对于任意的x∈R,我们有f'(x)=e^x-a>0
所以f(x)在R上单调递增(这里是R的原因1:f'(x)恒大于0;原因2:f(x)的定义域为R)
(2)a>0时,
令f'(x)≥0,则e^x-a≥0
也就是x≥ln a
所以f(x)在[ln a,+∞)上单调递增
再令f'(x)<0,则e^x-a<0
也就是x<ln a
所以f(x)在(-∞,ln a)上单调递减
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询