向量的减法法则是什么?

 我来答
小张聊变美
高粉答主

2020-12-29 · 关注我不会让你失望
知道小有建树答主
回答量:2303
采纳率:100%
帮助的人:70.2万
展开全部

a=(x,y),b=(x',y'), 则a-b=(x-x',y-y')。c=a-b,以b的结束为起点,a的结束为终点。数乘实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣·∣a∣。当λ>0时,λa与a同方向当λ<0时,λa与a反方向。

向量加减定则

三角形定则

三角形定则解决向量加法的方法:将各个向量依次首尾顺次相接,结果为第一个向量的起点指向最后一个向量的终点。

平行四边形定则

平行四边形定则解决向量加法的方法:将两个向量平移至公共起点,以向量的两条边作平行四边形,结果为公共起点的对角线

扩展资料

坐标系解向量加减法:

直角坐标系里面,定义原点为向量的起点。两个向量和与差的坐标分别等于这两个向量相应坐标的和与差若向量的表示为(x,y)形式:

A(X1,Y1) B(X2,Y2),则A + B=(X1+X2,Y1+Y2),A - B=(X1-X2,Y1-Y2)

简单地讲:向量的加减就是向量对应分量的加减,类似于物理的正交分解

岑学长
培训答主

2020-12-29 · 关注我学习会变得更厉害哦
知道小有建树答主
回答量:1823
采纳率:100%
帮助的人:66万
展开全部

向量减法法则是三角形法则,同样将两向量的始点放在一起,将两个终点连接,就是差,差向量方向指向被减向量。

如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0,OA-OB=BA,即“共同起点,指向被减”。

a=(x1,y1),b=(x2,y2),则a-b=(x1-x2,y1-y2)。

如图:c=a-b以b的结束为起点,a的结束为终点。

加减变换律:a+(-b)=a-b

扩展资料:

1、在平面坐标系中的向量减法运算:

向量a=(x1,y1),向量(x2,y2),向量c=向量a-向量b,c=(x1-x2,y1-y2)。

2、在空间坐标系中的向量减法运算:

向量a=(x1,y1,z1),向量(x2,y2,z2),向量c=向量a-向量b,c=(x1-x2,y1-y2,z1-z2)。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
Yyh22ym
2019-07-21 · TA获得超过1602个赞
知道小有建树答主
回答量:1234
采纳率:59%
帮助的人:44.5万
展开全部
1、可以把向量减法视为向量加法的逆运算。向量加法运算已经掌握、也容易掌握:各向量首尾相接,从第一个向量起点到最末一个向量终点的向量就是它们的和向量。

一个由多个向量首尾相接组成的闭合多边形向量之和,其和向量为零。两个向量之和最易掌握。两个向量首尾相接,从起点到终点的向量是两向量之和。

2、把两个向量的起点放到一个共同起点,由一个向量终点引向另一个向量终点的向量就是两者之差向量,箭头指向谁、谁就是被减数向量。

3、在平面坐标系中的向量减法运算:

向量a=(x1,y1),向量(x2,y2),

向量c=向量a-向量b,

c=(x1-x2,y1-y2).

4、在空间坐标系中的向量减法运算:

向量a=(x1,y1,z1),向量(x2,y2,z2),

向量c=向量a-向量b,

c=(x1-x2,y1-y2,z1-z2)。

扩展资料:

三角形定则解决向量加减的方法:将各个向量依次首尾顺次相接,结果为第一个向量的起点指向最后一个向量的终点。

平行四边形定则解决向量加法的方法:将两个向量平移至公共起点,以向量的两条边作平行四边形,结果为公共起点的对角线。

平行四边形定则解决向量减法的方法:将两个向量平移至公共起点,以向量的两条边作平行四边形,结果由减向量的终点指向被减向量的终点。

(平行四边形定则只适用于两个非零非共线向量的加减。)

坐标系解向量加减法:

在直角坐标系里面,定义原点为向量的起点.两个向量和与差的坐标分别等于这两个向量相应坐标的和与差若向量的表示为(x,y)形式,

A(X1,Y1) B(X2,Y2),则A+B=(X1+X2,Y1+Y2),A-B=(X1-X2,Y1-Y2)

简单地讲:向量的加减就是向量对应分量的加减。类似于物理的正交分解。
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2019-07-21
展开全部
向量减法法则是三角形法则,同样将两向量的始点(就是没箭头的那个点)放在一起,将两个终点连接,就是差,差向量方向指向被减向量
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
身牧浅裤情次1R
2020-01-04 · TA获得超过275个赞
知道答主
回答量:1099
采纳率:11%
帮助的人:53.9万
展开全部
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(3)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式