解绝对值不等式方法
1个回答
展开全部
绝对值不等式解法的基本思路是去掉绝对值符号,把它转化为一般的不等式求解,转化的方法一般有绝对值定义法、平方法、零点区域法。在不等式应用中,经常涉及质量、面积、体积等,也涉及某些数学对象(如实数、向量)的大小或绝对值。它们都是通过非负数来度量的。
通解一般是数轴标根法,也是一般情况下最快的方法。
在数轴上把使绝对值为零的点都标出来,根据绝对值的几何意义,绝对值表示的是两点间的距离(当然就为正了),以此解题。比如|x-3|+|x-6|>5,如果x在3和6之间,那么x到3的距离加上x到6的距离就只能是6-3=3,而5-3=2,2/2=1,故答案应为x<3-1=2或者x>6+1=7,即(x<2)||(x>7)。
也可以用零点分段法,也是在数轴上将使式中绝对值为零的点都标出,然后不用几何意义,而是分段讨论。把每个绝对值项展开,然后化为普通不等式,将求得的解集与你所分的这一段取交集,得到x在此段的解集。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
北京埃德思远电气技术咨询有限公司
2021-11-22 广告
2021-11-22 广告
假设条件在短路的实际计算中, 为了能在准确范围内迅速地计算短路电流, 通常采取以下简化假设。(1)不考虑发电机的摇摆现象。(2)不考虑磁路饱和,认为短路回路各元件的电抗为常数。(3)不考虑线路对地电容, 变压器的磁支路和高压电网中的电阻, ...
点击进入详情页
本回答由北京埃德思远电气技术咨询有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询